
Deep Learning vs. Traditional Learning 

for Radio Frequency Fingerprinting 

Andréas OTTO1, Seani RANANGA1, Moshe MASONTA2  

1Data Science for Social Impact, Department of Computer Science, University of Pretoria, 

South Africa 

Email: u19218525@tuks.co.za, seani.rananga@up.ac.za 
2Council for Scientific and Industrial Research, Pretoria, South Africa 

Email: mmasonta@csir.co.za 

Abstract: Radio Frequency (RF) fingerprinting is the theory of identifying a wireless device based 

on its unique transmitting characteristics. RF fingerprinting uses the validated concept that the 

physical components and configuration of a transmitting device can result in a distinct wireless 

emission. This research focuses on the application of machine learning algorithms, specifically 

Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) for the task of RF 

fingerprinting. The primary aim of this research paper is to comparatively assess the performance 

of SVMs and CNNs in RF fingerprinting for wireless device identification, focusing on 

hyperparameters, accuracy and real-world applicability. The study includes an in-depth 

implementation and evaluation of the SVMs and CNNs models, considering their performance in 

a high-dimensional dataset of multiple transmissions and wireless devices. While the CNN model 

slightly outperformed the SVM in terms of classification accuracy, other metrics such as inference 

time and training duration made the SVM equally competitive. The high accuracy and competitive 

inference times affirm the real-world applicability of these models, and their need to be further 

explored. 
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1. Introduction  

Wireless devices are integral to modern society, serving critical roles in communication and 

network access. Ensuring secure and authorised use of these devices is paramount. Radio 

frequency (RF) fingerprinting emerges as a promising technique for enhancing security 

measures in wireless devices. It not only serves as an additional layer of authentication but 

also has applications in device localisation, intrusion detection and improved RF spectrum 

access [1]. 

1.1 – Radio Frequency Fingerprinting 

RF fingerprinting identifies wireless devices based on their unique electromagnetic 

emissions, which arise from manufacturing inconsistencies in components like power 

amplifiers and filters. These imperfections lead to unique signal variations, akin to human 

fingerprints. This is often done by characterising the In-Phase (I) and Quadrature (Q) phase 

or I/Q offset. The I/Q represents the amplitude and phase of the signal, respectively, and their 

offset can serve as the unique identifier [2,3]. RF fingerprinting enhances wireless 

communication security by fortifying authentication mechanisms and strengthening 

resilience against network attacks. RF fingerprinting ensures that only authorised devices 

access the network, bolstering overall security measures. This approach aligns with the 

broader goal of enhancing the security posture of all wireless communication infrastructures, 



making them more robust and resistant to emerging threats. By adding this physical layer of 

security, RF fingerprinting can effectively mitigate threats such as device spoofing [3,4]. The 

main drive of RF fingerprinting is to add a physical layer of security to wireless 

communication using improved device identification and authentication [3].  

1.2 – Machine Learning in RF Fingerprinting  

Supervised machine learning (ML) algorithms have shown efficacy in feature extraction and 

interpretation for complex tasks like RF fingerprinting. Advances in these algorithms have 

led to deep learning models, such as Convolutional Neural Networks (CNNs), that mimic 

neural functions [5,6]. This paper will focus on comparing the performance of CNNs with 

traditional supervised learning algorithms like Support Vector Machines (SVMs) in the 

context of RF fingerprinting. The paper addresses the lack of direct comparison between 

SVMs and CNNs in RF fingerprinting by conducting a comparative analysis. Leveraging a 

high-dimensional dataset, the paper aims to determine the optimal ML technique for real-

world scenarios based on classification accuracy and inference speed, evaluating both SVMs 

and CNNs with an emphasis on correct and rapid identification. 

1.3 – Support Vector Machines 

An SVM is a supervised ML algorithm used for classification and regression. They aim to 

find the hyperplane that best separates two classes by maximising the margin between them. 

In cases where data cannot be separated linearly, SVMs apply a kernel function to transform 

it into a higher-dimensional space, enabling separation by a linear hyperplane. SVMs are 

effective for handling both linearly and nonlinearly separable data [7]. 

1.4 – Convolutional Neural Network 

CNNs represent a class of artificial neural networks comprising convolutional, nonlinear, 

pooling, and fully connected layers. Within convolutional layers, filters traverse input data, 

computing a weighted sum via element-wise multiplication with the input's receptive field. 

These operations are defined by parameters such as stride, filter size, and zero padding. 

Nonlinear activation functions, like rectified learning unit (ReLU), regulate output 

characteristics. Pooling layers reduce input dimensionality, typically through operations like 

max pooling. For multiclass classification tasks such as image recognition, SoftMax layers 

are often utilised at the output, generating probabilistic class distributions [8]. 

1.5 – Related Work 

1. PARADIS: This system employs five distinct metrics to identify wireless devices 

using RF fingerprinting. It offers the flexibility of using either SVM or k-NN algorithms for 

classification. In controlled indoor tests, the SVM-based system achieved an impressively 

low error rate of 0.0034% [9]. 

2. I/Q Imbalance SVM: This approach capitalises on the hardware-induced imbalances 

in quadrature modulation signals to perform RF fingerprinting. When tested on simulated 

signals, the model demonstrated over 90% accuracy at a signal-to-noise ratio (SNR) of 15dB 

and higher [10]. 

3. ORACLE: a CNN-based model that uses raw I/Q samples from a diverse set of over 

100 Wi-Fi and 16 software-defined radios. It achieved a median accuracy of 99% for up to 

100 devices and 96% for a set of 140 devices, showcasing its robustness [11]. 

4. A massive experiment: This study compared two CNN architectures, including one 

based on the ResNet-50 model, across a dataset ranging from 50 to 1 000 devices. The models 



showed high accuracy and scalability, with the baseline model performing better on equalised 

data. The study also noted the impact of channel conditions and SNR on model performance 

[12]. 

2. Objectives 

Both SVMs and CNNs have individually proven to be effective for the task of RF 

fingerprinting [9,11]. The primary aim of this research is to comparatively assess the 

performance of SVMs and CNNs in RF fingerprinting for wireless device identification. The 

study leverages a high-dimensional dataset and focuses on optimising hyperparameters for 

both  ML models. The overarching goal is to identify the most effective model concerning 

accuracy, computational time, and inference speed. 

 

2.1 Sub-Objectives: 

1. Model efficacy: evaluate the performance of SVM and CNN models in terms of 

classification accuracy, inference time and training time. This study aims to achieve high 

accuracy rates, surpassing existing benchmarks in the literature. 

2. Real-world applicability: examine the practicality of the models by considering their 

inference times, thereby evaluating their suitability for real-time applications in security as a 

service (SaaS) offering. 

3. Benchmarking and future research: compare the developed models against existing 

benchmarks and identify avenues for future research. 

3. Methodology 

3.1 – Dataset Description 

The dataset used in this study was sourced from [13]. It comprises wireless communication 

data captured in a controlled testbed environment, consisting of multiple nodes organised in 

a structured arrangement with one-metre spacing. A central receiver node, located near the 

centre of the arrangement, was used to collect data from 163 surrounding transmitter nodes. 

3.2 – Features and Preprocessing 

Each Wi-Fi packet in the dataset contains the first 256 I/Q normalised samples (256x2), 

which were preprocessed to ensure a unity average magnitude. The dataset operates in 

compliance with Channel 11 of the IEEE 802.11g standard, featuring a central frequency set 

at 2 462 MHz and offering a 20 MHz bandwidth [13]. For the SVM model, the original 2x256 

I/Q points for each sample were flattened into a single 512-dimensional vector. This step was 

necessary to adapt the dataset for the requirements of the SVM, as SVMs do not inherently 

handle multi-dimensional data in the same way that CNNs do. For the CNN, the original 

2x256 I/Q points were retained in their multi-dimensional form to exploit the ability of the 

CNN to learn spatial hierarchies of features, potentially improving performance in RF 

fingerprinting tasks [14].  

3.3 – Class Distribution 

The dataset is heavily imbalanced, with some classes having as many as 6 000 samples and 

others as few as 20. It has already been divided into a training set containing 305 289 samples 

and a test set with 83 806 samples, comprising 163 unique classes. Figure 1 illustrates the 

class distributions in the training and testing datasets. The distributions emphasise the 



extensive class imbalance in the datasets. The predefined data split however does serve as a 

valuable benchmark for comparing the performance of ML models. 

 

 

Figure 1 – Class Distributions 

3.4 – Hyperparameter Optimization (SVM) 

To fine-tune the hyperparameters of the SVM, Randomised Search Cross-Validation 

(RandomizedSearchCV) was utilised. This method was preferred over Grid Search for its 

computational efficiency and its capacity to explore a broader hyperparameter space within 

a constrained time frame. Initially, three kernel functions—linear, radial basis function 

(RBF), and polynomial—were evaluated. The linear kernel was promptly dismissed due to 

its inferior performance metrics, while the polynomial kernel demonstrated consistent 

superiority over the RBF kernel. 

 A 2-fold cross-validation was employed as an effective choice given the high dimensionality 

and class imbalance of the dataset. This strategy provided a reliable estimate of the 

generalisation performance. RandomizedSearchCV was executed with varying sample sizes 

(1 000, 4 000, 10 000) to investigate the impact on performance and computational time of 

the model. As the sample size increased, so did the computational time, exponentially. Given 

that 100 iterations with 2-fold cross-validation would yield nearly 200 trained models, 

undersampling was adopted to make the hyperparameter search computationally viable. 

Importantly, the accuracy of the suggested hyperparameters improved as the sample size 

increased. 

 

 The hyperparameter search space encompassed the following parameters: 

1. Kernel: linear, radial basis function, polynomial 

2. Degree: [2, 3] 

3. Gamma: 'scale', 'auto', -0.5, 0.1, 1 

4. Regularisation Parameter (C): [0.1, 1, 10, 100] 

5. Shrinking: True, False 

6. Class Weight: None, Balanced 

3.5 – Hyperparameter Optimization (CNN) 

3.5.1 - Architecture 

Preliminary architectural choices: Two CNN architectures were considered for the task: a 

simpler model and a more complex model. The simpler model, despite various 

hyperparameter tuning attempts, was unable to surpass the performance of the SVM model, 



achieving a maximum accuracy in the 70% range. This led to the exploration of a more 

complex architecture. 

 Final Architecture: the more complex model was designed with additional layers and batch 

normalisation to improve its learning capabilities. This architecture finally achieved 

performance metrics comparable to the SVM model. The more sophisticated architecture was 

designed to capture intricate patterns in the dataset. The architecture comprises several main 

components: convolutional layers, fully connected layers, and dropout layers for 

regularisation: 

1. Convolutional layers: The initial convolutional layer employs 64 filters and utilises 

a 3x2 kernel dimension. This is succeeded by a layer for batch normalisation. The subsequent 

convolutional layer incorporates 128 filters with a 3x1 kernel dimension and is also 

succeeded by a batch normalisation layer. The final convolutional layer includes 256 filters 

and a 3x1 kernel, followed by another batch normalisation layer. 

2. Fully connected layers: The initial fully connected layer consists of 512 nodes and 

accepts a one-dimensional array from the preceding convolutional layer. The following fully 

connected layer comprises 256 nodes. The terminal fully connected layer contains 163 nodes, 

aligning with the class count of the dataset. 

3. Regularisation layers: A pair of dropout layers are incorporated post the fully 

connected layers to mitigate model overfitting. The dropout ratio is a tuneable 

hyperparameter during the model training phase. 

4. Activation functions: After each convolutional and fully connected layer, ReLU 

activation functions are applied.  
5. Optimization strategy and loss function: The optimization is conducted using the 

Adam strategy, and loss calculations are performed using the Cross-Entropy loss metric.  

 

3.5.2 - Hyperparameters 

A 2-fold cross-validation was employed, similar to the SVM model, to validate the 

performance of the CNN. This strategy was effective in providing a reliable measure of the 

generalisation capabilities of the model. Unlike the SVM model, the CNN benefited from 

under and over-sampling strategies as well as class weighting. These techniques improved 

the performance of the model, indicating their suitability for the CNN architecture. Optuna 

was employed for hyperparameter optimization, focusing on the learning rate, dropout rate, 

batch size, and optimizer type.  

 

 The hyperparameter search space for Optuna was defined as follows: 

1. Learning rate: Log-uniform distribution between 1×10⁻⁵ and 1×10⁻¹ 

2. Dropout rate: Uniform distribution between 0.0 and 0.7 

3. Batch size: [16, 32, 64, 128] 

4. Optimizer: Adam, SGD, RMSprop 

3.6 – Model Training Stopping Criteria 

The methodology distinguishes between the stopping criteria for SVM and CNN models. 

SVMs optimise a cost function and terminate when changes in this function are below a set 

threshold or after a maximum number of iterations. CNNs, on the other hand, use epoch-

based stopping with early termination based on validation metrics. The Optuna study used a 

limited 5 epochs for each trial to manage computational time across 200 trials. 



4. Technology Description 

Experiments were conducted using Python. SVMs utilised the Scikit-learn library, leveraging 

all six cores and 12 threads of the central processing unit (CPU). CNNs were implemented 

with PyTorch and CUDA, using an RTX 2070 Super—a graphical processing unit (GPU). 

For consistency, inference times for both the SVM and the CNN were assessed on the CPU. 

The CNN was also evaluated on the GPU, where it predictably surpassed the performance of 

the CPU.  

 While SVMs can gain from GPU acceleration, the boost might not be significant for high-

dimensional data. As per the study titled 'GPU parallel implementation of support vector 

machines for hyperspectral image classification' in [15], GPUs yielded an 18.5x speed 

increase. However, this was with a 13-class dataset, whereas our dataset has 2x256 features 

and 163 classes, implying potential lesser GPU benefits in our context. 

5. Results & Models Developed 

5.1 – Final Models and Hyperparameters (SVM) 

The optimal SVM model utilised a polynomial kernel of degree 2, a regularisation parameter 

(C) of 350, and the 'scale' setting for gamma, achieving an accuracy of 86.46% with 85 783 

support vectors. It required 3 747 seconds for training and 4 229 seconds for testing. This 

polynomial kernel indicates non-linear data separability, with a quadratic transformation 

being effective for classification. The 'scale' gamma setting and the chosen regularisation 

parameter contributed to the accuracy of the model, while the high number of support vectors 

underscores the complexity of the decision boundary. 

Comparatively, models with different hyperparameters presented varied trade-offs. A model 

with C = 400 and degree = 3 had an accuracy of 85.81%, longer computational times (5 911 

and 5 765 seconds for training and testing), and 116 765 support vectors. Models with C 

values near 350 displayed similar accuracies but reduced training times. Notably, a 'balanced' 

class weight model had diminished accuracy, suggesting that this weighting did not benefit 

the task, possibly due to pronounced class imbalance. 

5.2 – Final Models and Hyperparameters (CNN) 

The optimal model had a learning rate of 1×10⁻⁵, 0.3 dropout rate, and batch size of 128, and 

used the Adam optimizer, achieving an accuracy of 88.30% in roughly 20 820 seconds. 

Variations in hyperparameters led to different performance metrics: a 0.35 dropout rate 

resulted in 87.17% accuracy, while a learning rate of 1×10⁻⁴ yielded 86.11%. 

To counteract class imbalance, a dual sampling strategy was employed, undersampling high-

frequency classes and oversampling low-frequency ones. Class weights, calculated using a 

balanced method, were also applied during training. The models trained for 200 epochs, with 

loss values indicating convergence by the end. Despite class imbalance challenges, effective 

hyperparameter tuning enabled high accuracy. Using a predefined data split had limitations 

but was essential for benchmark comparisons. 

5.3 – Results Comparison 

5.3.1 - Accuracy and Hyperparameters 

Hyperparameter space selection was driven by the dataset's complexity and the requirement 

to accommodate diverse model architectures. Given the high dimensionality of the data, we 

systematically explored a wide range of hyperparameters, including those typically 

associated with simpler data structures. This approach proved insightful as it allowed us to 



discern that achieving an effective fingerprint required increasing model complexity to 

adequately capture the intricate features and nuances present in the data. Both the CNN and 

SVM models were optimised for high classification accuracy. The CNN model achieved an 

accuracy of 88.30%, slightly outperforming the SVM model, which had an accuracy of 

86.46%. Notably, these models not only matched but also surpassed the performance of the 

models in the paper that created the dataset [13], which reported an accuracy of 85% on 

unseen data using CNNs and Autoencoders for anomaly detection. 

5.3.2 – Computational Time 

The SVM model took approximately 3 747 seconds for training and 4 229 seconds for testing. 

In contrast, the CNN model required about 20 820 seconds for training, significantly higher 

than its SVM counterpart. This difference in computational time can be attributed to the 

complex architecture of the CNN. 

5.3.3 - Inference Times 

CNN on GPU: average inference time of approximately 0.0004 seconds for 1 000 random 

samples. CNN on CPU: average inference time of approximately 0.1933 seconds for 1 000 

random samples. SVM on CPU: average inference time of approximately 0.0322 seconds for 

1 000 random samples as seen in Table 1. 

Table 1 – Model Comparative Metrics 

Model 

Name 

Accurac

y 

Precision 

 

Recall F1-

Score 

Training 

Time 

Inference 

Time (CPU) 

Inference Time 

(GPU) 

CNN 0.88 0.74 0.76 0.74 347 mins 0.1933s 0.0003s 

SVM 0.86 0.76 0.75 0.74 62 mins 0.0321s N/A 

6. Business Benefits 

The use of advanced ML algorithms such as SVMs and CNNs in RF fingerprinting offers 

commercial opportunities in the growing field of SaaS. These models demonstrate high 

accuracy, making them suitable for secure wireless device authentication. In a SaaS context, 

businesses could deploy these algorithms to provide robust security solutions to other 

organisations. The low inference times of these models enable real-time applications, 

enhancing operational efficiency and immediate security. In summary, high accuracy and 

quick verification create new revenue opportunities like SaaS, supported by real-time 

security. A recent study [16] confirms the commercial potential of secure wireless device 

authentication, reinforcing the viability of SaaS models in RF fingerprinting research. 

7. Conclusion 

This research has made significant contributions to the field of RF fingerprinting by achieving 

high accuracy rates of 86.46% and 88.30% for SVM and CNN models, respectively while 

also highlighting inference times. These results not only surpass the existing benchmark of 

85% accuracy, found in the original dataset’s paper [13] but also indicate room for 

improvement with different dataset splits or class distribution balancing. These results 

underscore the potential of machine learning in enhancing wireless device security, 

particularly in the emerging field of SaaS. The low inference times make real-time 

authentication feasible, thereby enhancing operational security. 

 Future work should consider the use of alternative data formats, such as spectrograms [17], 

which could offer richer representations of RF signals. Additionally, an important 

consideration for future work is the incorporation of datasets that account for signal-to-noise 

ratios and other noise factors. Such datasets would provide a more realistic testing 

environment, thereby increasing the real-world applicability of the models.  



 Future work should also focus on extending the models to multiple bandwidths and centre 

frequencies. This would not only improve the generalizability of the models but also make 

them more adaptable to real-world scenarios. Furthermore, the development of more 

sophisticated models and perhaps entirely new paradigms tailored for RF fingerprinting is a 

promising avenue for research. Efforts should also be directed toward reducing inference and 

training times, thereby making these models more practical for real-time applications. 

 Rising new studies [16] indicate a growing interest and investment in this specific task, 

suggesting that RF fingerprinting is on the cusp of becoming a standardised security measure. 

In summary, this research contributes to the ongoing efforts to bolster wireless security, 

offering a foundation upon which future studies can build. 
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