dc.contributor.author |
Van der Walt, Christiaan M
|
|
dc.contributor.author |
Barnard, E
|
|
dc.date.accessioned |
2017-09-18T06:47:52Z |
|
dc.date.available |
2017-09-18T06:47:52Z |
|
dc.date.issued |
2017-02 |
|
dc.identifier.citation |
Van der Walt, C.M. & Barnard, E. 2017. Variable kernel density estimation in high-dimensional feature spaces. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), 4-9 February 2017, San Francisco, California, USA |
en_US |
dc.identifier.uri |
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14737
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/9562
|
|
dc.description |
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), 4-9 February 2017, San Francisco, California, USA |
en_US |
dc.description.abstract |
Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high-dimensional feature spaces. We derive a variable kernel bandwidth estimator by minimizing the leave-one-out entropy objective function and show that this estimator is capable of performing estimation in high-dimensional feature spaces with great success. We compare the performance of this estimator to state-of-the art maximum-likelihood estimators on a number of representative high-dimensional machine learning tasks and show that the newly introduced minimum leave-one-out entropy estimator performs optimally on a number of high-dimensional datasets considered. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Association for the Advancement of Artificial |
en_US |
dc.relation.ispartofseries |
Worklist;19424 |
|
dc.subject |
Machine learning |
en_US |
dc.subject |
Probability density estimation |
en_US |
dc.subject |
Non-parametric density estimation |
en_US |
dc.subject |
Kernel bandwidth estimation |
en_US |
dc.subject |
Maximum-likelihood |
en_US |
dc.title |
Variable kernel density estimation in high-dimensional feature spaces |
en_US |
dc.type |
Conference Presentation |
en_US |
dc.identifier.apacitation |
Van der Walt, C. M., & Barnard, E. (2017). Variable kernel density estimation in high-dimensional feature spaces. Association for the Advancement of Artificial. http://hdl.handle.net/10204/9562 |
en_ZA |
dc.identifier.chicagocitation |
Van der Walt, Christiaan M, and E Barnard. "Variable kernel density estimation in high-dimensional feature spaces." (2017): http://hdl.handle.net/10204/9562 |
en_ZA |
dc.identifier.vancouvercitation |
Van der Walt CM, Barnard E, Variable kernel density estimation in high-dimensional feature spaces; Association for the Advancement of Artificial; 2017. http://hdl.handle.net/10204/9562 . |
en_ZA |
dc.identifier.ris |
TY - Conference Presentation
AU - Van der Walt, Christiaan M
AU - Barnard, E
AB - Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high-dimensional feature spaces. We derive a variable kernel bandwidth estimator by minimizing the leave-one-out entropy objective function and show that this estimator is capable of performing estimation in high-dimensional feature spaces with great success. We compare the performance of this estimator to state-of-the art maximum-likelihood estimators on a number of representative high-dimensional machine learning tasks and show that the newly introduced minimum leave-one-out entropy estimator performs optimally on a number of high-dimensional datasets considered.
DA - 2017-02
DB - ResearchSpace
DP - CSIR
KW - Machine learning
KW - Probability density estimation
KW - Non-parametric density estimation
KW - Kernel bandwidth estimation
KW - Maximum-likelihood
LK - https://researchspace.csir.co.za
PY - 2017
T1 - Variable kernel density estimation in high-dimensional feature spaces
TI - Variable kernel density estimation in high-dimensional feature spaces
UR - http://hdl.handle.net/10204/9562
ER -
|
en_ZA |