ResearchSpace

Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

Show simple item record

dc.contributor.author Annamalai, Perushini
dc.contributor.author Musyoka, Nicholas M
dc.contributor.author Ren, Jianwei
dc.contributor.author Langmi, Henrietta W
dc.contributor.author Mathe, Mahlanyane K
dc.contributor.author Bessarabov, D
dc.contributor.author Petrik, LF
dc.date.accessioned 2017-09-06T09:31:05Z
dc.date.available 2017-09-06T09:31:05Z
dc.date.issued 2017-01
dc.identifier.citation Annamalai, P., Musyoka, N.M., Ren, J. et al. 2017. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications. Research on Chemical Intermediates, vol. 43(7): 4095-4102. DOI: 10.1007/s11164-017-2867-x en_US
dc.identifier.issn 0922-6168
dc.identifier.uri DOI: 10.1007/s11164-017-2867-x
dc.identifier.uri https://link.springer.com/article/10.1007/s11164-017-2867-x
dc.identifier.uri http://hdl.handle.net/10204/9542
dc.description Copyright: 2016 Springer. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, kindly consult the publisher's website. en_US
dc.description.abstract The current study explored the application of the electrospinning technique to produce multi-hierarchical composites for hydrogen storage applications. Predetermined control of fibre porosity is expected to enable production of well-defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1.83%, compared with 2.39 wt% for powder ZTC material. The potential of the electrospinning technique as a shaping option for preparing composites from loose powder is demonstrated. The ZTC–polyacrylonitrile (ZTC-PAN) composite retained about 76% of the hydrogen storage capacity of the ZTC. Vacuum degassing of the ZTC–PAN electrospun composite was also found to enhance the development of porosity, aiding hydrogen penetration into zeolite pores. en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartofseries Worklist;18613
dc.subject Zeolite 13X en_US
dc.subject Zeolite-templated carbon en_US
dc.subject Electrospinning en_US
dc.subject Hydrogen storage en_US
dc.title Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications en_US
dc.type Article en_US
dc.identifier.apacitation Annamalai, P., Musyoka, N. M., Ren, J., Langmi, H. W., Mathe, M. K., Bessarabov, D., & Petrik, L. (2017). Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications. http://hdl.handle.net/10204/9542 en_ZA
dc.identifier.chicagocitation Annamalai, Perushini, Nicholas M Musyoka, Jianwei Ren, Henrietta W Langmi, Mahlanyane K Mathe, D Bessarabov, and LF Petrik "Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications." (2017) http://hdl.handle.net/10204/9542 en_ZA
dc.identifier.vancouvercitation Annamalai P, Musyoka NM, Ren J, Langmi HW, Mathe MK, Bessarabov D, et al. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications. 2017; http://hdl.handle.net/10204/9542. en_ZA
dc.identifier.ris TY - Article AU - Annamalai, Perushini AU - Musyoka, Nicholas M AU - Ren, Jianwei AU - Langmi, Henrietta W AU - Mathe, Mahlanyane K AU - Bessarabov, D AU - Petrik, LF AB - The current study explored the application of the electrospinning technique to produce multi-hierarchical composites for hydrogen storage applications. Predetermined control of fibre porosity is expected to enable production of well-defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1.83%, compared with 2.39 wt% for powder ZTC material. The potential of the electrospinning technique as a shaping option for preparing composites from loose powder is demonstrated. The ZTC–polyacrylonitrile (ZTC-PAN) composite retained about 76% of the hydrogen storage capacity of the ZTC. Vacuum degassing of the ZTC–PAN electrospun composite was also found to enhance the development of porosity, aiding hydrogen penetration into zeolite pores. DA - 2017-01 DB - ResearchSpace DP - CSIR KW - Zeolite 13X KW - Zeolite-templated carbon KW - Electrospinning KW - Hydrogen storage LK - https://researchspace.csir.co.za PY - 2017 SM - 0922-6168 T1 - Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications TI - Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications UR - http://hdl.handle.net/10204/9542 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record