ResearchSpace

Modified temporal approach to meta-optimizing an extended Kalman filter's parameters

Show simple item record

dc.contributor.author Salmon, BP
dc.contributor.author Kleynhans, Waldo
dc.contributor.author Olivier, JC
dc.contributor.author Olding, WC
dc.contributor.author Wessels, Konrad J
dc.contributor.author Van den Bergh, Frans
dc.date.accessioned 2017-06-07T07:07:36Z
dc.date.available 2017-06-07T07:07:36Z
dc.date.issued 2014-07
dc.identifier.citation Salmon, B.P., Kleynhans, W., Olivier, J.C. et al. 2014. Modified temporal approach to meta-optimizing an extended Kalman filter's parameters. 2014 IEEE International Geoscience and Remote Sensing Symposium, Québec, Canada, 13-18 July 2014. DOI: 10.1109/IGARSS.2014.6946632 en_US
dc.identifier.issn 2153-7003
dc.identifier.uri DOI: 10.1109/IGARSS.2014.6946632
dc.identifier.uri http://ieeexplore.ieee.org/document/6946632/
dc.identifier.uri http://hdl.handle.net/10204/9156
dc.description Copyright: 2014 EE Publishers. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, please consult the publisher's website. en_US
dc.description.abstract It has been shown that time series containing reflectance values from the first two spectral bands of the MODerateresolution Imaging Spectroradiometer (MODIS) land surface reflectance product can be modelled as a triply modulated cosine function. A meta-optimization approach has been proposed in the literature for setting the parameters of the non-linear Extended Kalman Filter (EKF) to rapidly and efficiently estimate the features for these triply modulated cosine functions using spatial information. In this paper we modify this approach to utilize temporal information instead of spatial information to greatly reduce the processing time and storage requirements to process each time series. The parameters derived from the newly proposed method is classified with a support vector machine and compared to the original approach. Performance of the methods is tested on the Limpopo province in South Africa. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartofseries Worklist;18647
dc.relation.ispartofseries Worklist;14304
dc.subject MODerateresolution Imaging Spectroradiometer en_US
dc.subject MODIS en_US
dc.subject Kalman filtering en_US
dc.subject Remote sensing en_US
dc.subject Satellites en_US
dc.subject Time series en_US
dc.title Modified temporal approach to meta-optimizing an extended Kalman filter's parameters en_US
dc.type Conference Presentation en_US
dc.identifier.apacitation Salmon, B., Kleynhans, W., Olivier, J., Olding, W., Wessels, K. J., & Van den Bergh, F. (2014). Modified temporal approach to meta-optimizing an extended Kalman filter's parameters. IEEE. http://hdl.handle.net/10204/9156 en_ZA
dc.identifier.chicagocitation Salmon, BP, Waldo Kleynhans, JC Olivier, WC Olding, Konrad J Wessels, and Frans Van den Bergh. "Modified temporal approach to meta-optimizing an extended Kalman filter's parameters." (2014): http://hdl.handle.net/10204/9156 en_ZA
dc.identifier.vancouvercitation Salmon B, Kleynhans W, Olivier J, Olding W, Wessels KJ, Van den Bergh F, Modified temporal approach to meta-optimizing an extended Kalman filter's parameters; IEEE; 2014. http://hdl.handle.net/10204/9156 . en_ZA
dc.identifier.ris TY - Conference Presentation AU - Salmon, BP AU - Kleynhans, Waldo AU - Olivier, JC AU - Olding, WC AU - Wessels, Konrad J AU - Van den Bergh, Frans AB - It has been shown that time series containing reflectance values from the first two spectral bands of the MODerateresolution Imaging Spectroradiometer (MODIS) land surface reflectance product can be modelled as a triply modulated cosine function. A meta-optimization approach has been proposed in the literature for setting the parameters of the non-linear Extended Kalman Filter (EKF) to rapidly and efficiently estimate the features for these triply modulated cosine functions using spatial information. In this paper we modify this approach to utilize temporal information instead of spatial information to greatly reduce the processing time and storage requirements to process each time series. The parameters derived from the newly proposed method is classified with a support vector machine and compared to the original approach. Performance of the methods is tested on the Limpopo province in South Africa. DA - 2014-07 DB - ResearchSpace DP - CSIR KW - MODerateresolution Imaging Spectroradiometer KW - MODIS KW - Kalman filtering KW - Remote sensing KW - Satellites KW - Time series LK - https://researchspace.csir.co.za PY - 2014 SM - 2153-7003 T1 - Modified temporal approach to meta-optimizing an extended Kalman filter's parameters TI - Modified temporal approach to meta-optimizing an extended Kalman filter's parameters UR - http://hdl.handle.net/10204/9156 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record