ResearchSpace

Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation

Show simple item record

dc.contributor.author Makgwane, Peter R
dc.contributor.author Ray, SS
dc.date.accessioned 2016-06-27T08:43:58Z
dc.date.available 2016-06-27T08:43:58Z
dc.date.issued 2015-02
dc.identifier.citation Makgwane, P.R. and Ray, S.S. 2015. Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation. Applied Catalysis A: General, 10-22, 10-22 en_US
dc.identifier.issn 0926-860X
dc.identifier.uri http://www.sciencedirect.com/science/article/pii/S0926860X14007856
dc.identifier.uri http://hdl.handle.net/10204/8595
dc.description Copyright: 2015 Elsevier. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, please consult the publisher's website. The definitive version of the work is published in Applied Catalysis A: General, 10-22, 10-22 en_US
dc.description.abstract Nanostructured vanadium-tin oxide (V(sub2)O(sub5)/SnO(sub2)) catalysts with V(sub2)O(sub5) loading in a range of 5–20 wt% have been synthesized. The V(sub2)O(sub5)/SnO(sub2) nanostructures exhibited effective catalytic performance in the hydroxylation of benzene to phenol using H(sub2)O(sub2) as the terminal oxidant. The structure of the catalysts was studied using various techniques, such as XRD, Raman spectroscopy, SEM, EDX, TEM/HRTEM, STEM-HAADF, and H2-TPR and the adsorption/desorption of nitrogen. The Raman study supported the formation of certain monomeric and polymeric surface vanadium species and a crystalline V(sub2)O(sub5) phase on their respective dehydrated mixed V(sub2)O(sub5)/SnO(sub2) nanostructured catalysts depending on the vanadium loading. TEM studies revealed the morphology of V2O5 and SnO2 to be characterized by the formation of nanoparticles with a size of approximately 20 nm. Moreover, the dispersion of V(sub2)O(sub5) on SnO(sub2) was also found to be influenced by V(sub2)O(sub5) loading where a high loading of 20 wt% exhibited an agglomeration of particles, which affected its catalytic activity. The V(sub2)O(sub5)/SnO(sub2) catalysts resulted in modified redox properties, as evidenced by the H2-TPR results. These structural developments of mixed V(sub2)O(sub5)/SnO(sub2) presented a highly active catalyst for the hydroxylation of benzene to phenol affording up to a 34% conversion, while preserving a phenol selectivity of 96% for a sample of V(sub2)O(sub5)/SnO(sub2) containing 10 wt% V(sub2)O(sub5). The catalytic results indicated that the vanadium content in V(sub2)O(sub5)/SnO(sub2) played an important role not only in improved substrate conversion but also in preserving a high selectivity for phenol. This was also evident from the correlation of the different vanadium phases for pure and composite catalysts with their respective catalytic results. Both polymeric and monomeric vanadium species on an SnO(sub2) surface proved to be critical for the high catalytic performance of the catalyst. The high catalytic performance displayed by V(sub2)O(sub5)/SnO(sub2) can provide opportunities for further development as a green and economical protocol for direct phenol synthesis from benzene hydroxylation with excellent catalyst recyclability. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartofseries Workflow;16392
dc.subject Vanadium oxide en_US
dc.subject Tin oxide en_US
dc.subject Mixed oxide en_US
dc.subject Nanostructure en_US
dc.subject Hydroxylation en_US
dc.subject Benzene en_US
dc.title Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation en_US
dc.type Article en_US
dc.identifier.apacitation Makgwane, P. R., & Ray, S. (2015). Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation. http://hdl.handle.net/10204/8595 en_ZA
dc.identifier.chicagocitation Makgwane, Peter R, and SS Ray "Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation." (2015) http://hdl.handle.net/10204/8595 en_ZA
dc.identifier.vancouvercitation Makgwane PR, Ray S. Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation. 2015; http://hdl.handle.net/10204/8595. en_ZA
dc.identifier.ris TY - Article AU - Makgwane, Peter R AU - Ray, SS AB - Nanostructured vanadium-tin oxide (V(sub2)O(sub5)/SnO(sub2)) catalysts with V(sub2)O(sub5) loading in a range of 5–20 wt% have been synthesized. The V(sub2)O(sub5)/SnO(sub2) nanostructures exhibited effective catalytic performance in the hydroxylation of benzene to phenol using H(sub2)O(sub2) as the terminal oxidant. The structure of the catalysts was studied using various techniques, such as XRD, Raman spectroscopy, SEM, EDX, TEM/HRTEM, STEM-HAADF, and H2-TPR and the adsorption/desorption of nitrogen. The Raman study supported the formation of certain monomeric and polymeric surface vanadium species and a crystalline V(sub2)O(sub5) phase on their respective dehydrated mixed V(sub2)O(sub5)/SnO(sub2) nanostructured catalysts depending on the vanadium loading. TEM studies revealed the morphology of V2O5 and SnO2 to be characterized by the formation of nanoparticles with a size of approximately 20 nm. Moreover, the dispersion of V(sub2)O(sub5) on SnO(sub2) was also found to be influenced by V(sub2)O(sub5) loading where a high loading of 20 wt% exhibited an agglomeration of particles, which affected its catalytic activity. The V(sub2)O(sub5)/SnO(sub2) catalysts resulted in modified redox properties, as evidenced by the H2-TPR results. These structural developments of mixed V(sub2)O(sub5)/SnO(sub2) presented a highly active catalyst for the hydroxylation of benzene to phenol affording up to a 34% conversion, while preserving a phenol selectivity of 96% for a sample of V(sub2)O(sub5)/SnO(sub2) containing 10 wt% V(sub2)O(sub5). The catalytic results indicated that the vanadium content in V(sub2)O(sub5)/SnO(sub2) played an important role not only in improved substrate conversion but also in preserving a high selectivity for phenol. This was also evident from the correlation of the different vanadium phases for pure and composite catalysts with their respective catalytic results. Both polymeric and monomeric vanadium species on an SnO(sub2) surface proved to be critical for the high catalytic performance of the catalyst. The high catalytic performance displayed by V(sub2)O(sub5)/SnO(sub2) can provide opportunities for further development as a green and economical protocol for direct phenol synthesis from benzene hydroxylation with excellent catalyst recyclability. DA - 2015-02 DB - ResearchSpace DP - CSIR KW - Vanadium oxide KW - Tin oxide KW - Mixed oxide KW - Nanostructure KW - Hydroxylation KW - Benzene LK - https://researchspace.csir.co.za PY - 2015 SM - 0926-860X T1 - Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation TI - Development of a high-performance nanostructured V(sub2)O(sub5)/SnO(sub2)catalyst for efficient benzene hydroxylation UR - http://hdl.handle.net/10204/8595 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record