dc.contributor.author |
Ackermann, ER
|
|
dc.contributor.author |
Grobler, TL
|
|
dc.contributor.author |
Kleynhans, W
|
|
dc.contributor.author |
Olivier, JC
|
|
dc.contributor.author |
Salmon, BP
|
|
dc.contributor.author |
Van Zyl, AJ
|
|
dc.date.accessioned |
2013-03-25T06:17:34Z |
|
dc.date.available |
2013-03-25T06:17:34Z |
|
dc.date.issued |
2012-09 |
|
dc.identifier.citation |
Ackermann, ER, Grobler, TL, Kleynhans, W, Olivier, JC, Salmon, BP and Van Zyl, AJ. 2012. Cavalieri integration. Quaestiones Mathematicae, vol. 35(3), pp. 265-296 |
en_US |
dc.identifier.issn |
1607-3606 |
|
dc.identifier.uri |
http://www.tandfonline.com/doi/pdf/10.2989/16073606.2012.724937
|
|
dc.identifier.uri |
http://www.tandfonline.com/doi/abs/10.2989/16073606.2012.724937
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/6582
|
|
dc.description |
Copyright: 2012 Taylor & Francis. This is the postprint version of the work. The definitive version is published in Quaestiones Mathematicae, vol. 35(3), pp. 265-296 |
en_US |
dc.description.abstract |
We use Cavalieri’s principle to develop a novel integration technique which we call Cavalieri integration. Cavalieri integrals differ from Riemann integrals in that non-rectangular integration strips are used. In this way we can use single Cavalieri integrals to find the areas of some interesting regions for which it is difficult to construct single Riemann integrals. We also present two methods of evaluating a Cavalieri integral by first transforming it to either an equivalent Riemann or Riemann-Stieltjes integral by using special transformation functions h(x) and its inverse g(x), respectively. Interestingly enough it is often very difficult to find the transformation function h(x), whereas it is very simple to obtain its inverse g(x). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Taylor & Francis |
en_US |
dc.relation.ispartofseries |
Workflow;9581 |
|
dc.relation.ispartofseries |
Workflow;9591 |
|
dc.subject |
Cavalieri |
en_US |
dc.subject |
Method of indivisibles |
en_US |
dc.subject |
Riemann |
en_US |
dc.subject |
Riemann-Stieltjes |
en_US |
dc.title |
Cavalieri integration |
en_US |
dc.type |
Article |
en_US |
dc.identifier.apacitation |
Ackermann, E., Grobler, T., Kleynhans, W., Olivier, J., Salmon, B., & Van Zyl, A. (2012). Cavalieri integration. http://hdl.handle.net/10204/6582 |
en_ZA |
dc.identifier.chicagocitation |
Ackermann, ER, TL Grobler, W Kleynhans, JC Olivier, BP Salmon, and AJ Van Zyl "Cavalieri integration." (2012) http://hdl.handle.net/10204/6582 |
en_ZA |
dc.identifier.vancouvercitation |
Ackermann E, Grobler T, Kleynhans W, Olivier J, Salmon B, Van Zyl A. Cavalieri integration. 2012; http://hdl.handle.net/10204/6582. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Ackermann, ER
AU - Grobler, TL
AU - Kleynhans, W
AU - Olivier, JC
AU - Salmon, BP
AU - Van Zyl, AJ
AB - We use Cavalieri’s principle to develop a novel integration technique which we call Cavalieri integration. Cavalieri integrals differ from Riemann integrals in that non-rectangular integration strips are used. In this way we can use single Cavalieri integrals to find the areas of some interesting regions for which it is difficult to construct single Riemann integrals. We also present two methods of evaluating a Cavalieri integral by first transforming it to either an equivalent Riemann or Riemann-Stieltjes integral by using special transformation functions h(x) and its inverse g(x), respectively. Interestingly enough it is often very difficult to find the transformation function h(x), whereas it is very simple to obtain its inverse g(x).
DA - 2012-09
DB - ResearchSpace
DP - CSIR
KW - Cavalieri
KW - Method of indivisibles
KW - Riemann
KW - Riemann-Stieltjes
LK - https://researchspace.csir.co.za
PY - 2012
SM - 1607-3606
T1 - Cavalieri integration
TI - Cavalieri integration
UR - http://hdl.handle.net/10204/6582
ER -
|
en_ZA |