ResearchSpace

Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix

Show simple item record

dc.contributor.author Vlok, JD
dc.contributor.author Olivier, JC
dc.date.accessioned 2013-01-28T08:10:46Z
dc.date.available 2013-01-28T08:10:46Z
dc.date.issued 2012-08-14
dc.identifier.citation Vlok, JD and Olivier, JC. 2012. Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix. IET Communications, vol. 6(12), pp. 1804-1811 en_US
dc.identifier.issn 1751-8628
dc.identifier.issn 1751-8628
dc.identifier.uri http://digital-library.theiet.org/content/journals/10.1049/iet-com.2011.0843
dc.identifier.uri http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6353031
dc.identifier.uri http://hdl.handle.net/10204/6451
dc.description Copyright: 2012 IET. This is the postprint version of the work. The definitive version is published in IET Communications, vol. 6(12), pp. 1804-1811 en_US
dc.description.abstract Eigenvalue distributions of Wishart matrices are given in the literature as functions or distributions defined in terms of matrix arguments requiring numerical evaluation. As a result the relationship between parameter values and statistics is not available analytically and the complexity of the numerical evaluation involved may limit the implementation, evaluation and use of eigenvalue techniques using Wishart matrices. This paper presents analytic expressions that approximate the distribution of the largest eigenvalue of white Wishart matrices and the corresponding sample covariance matrices. It is shown that the desired expression follows from an approximation to the Tracy-Widom distribution in terms of the Gamma distribution. The approximation offers largely simplified computation and provides statistics such as the mean value and region of support of the largest eigenvalue distribution. Numeric results from the literature are compared with the approximation and Monte Carlo simulation results are presented to illustrate the accuracy of the proposed analytic approximation. en_US
dc.language.iso en en_US
dc.publisher IET en_US
dc.relation.ispartofseries Workflow;10054
dc.subject Eigenvalue distribution en_US
dc.subject Wishart matrices en_US
dc.subject PCA en_US
dc.subject Principal component analysis en_US
dc.subject Tracy-Widom distribution en_US
dc.title Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix en_US
dc.type Article en_US
dc.identifier.apacitation Vlok, J., & Olivier, J. (2012). Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix. http://hdl.handle.net/10204/6451 en_ZA
dc.identifier.chicagocitation Vlok, JD, and JC Olivier "Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix." (2012) http://hdl.handle.net/10204/6451 en_ZA
dc.identifier.vancouvercitation Vlok J, Olivier J. Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix. 2012; http://hdl.handle.net/10204/6451. en_ZA
dc.identifier.ris TY - Article AU - Vlok, JD AU - Olivier, JC AB - Eigenvalue distributions of Wishart matrices are given in the literature as functions or distributions defined in terms of matrix arguments requiring numerical evaluation. As a result the relationship between parameter values and statistics is not available analytically and the complexity of the numerical evaluation involved may limit the implementation, evaluation and use of eigenvalue techniques using Wishart matrices. This paper presents analytic expressions that approximate the distribution of the largest eigenvalue of white Wishart matrices and the corresponding sample covariance matrices. It is shown that the desired expression follows from an approximation to the Tracy-Widom distribution in terms of the Gamma distribution. The approximation offers largely simplified computation and provides statistics such as the mean value and region of support of the largest eigenvalue distribution. Numeric results from the literature are compared with the approximation and Monte Carlo simulation results are presented to illustrate the accuracy of the proposed analytic approximation. DA - 2012-08-14 DB - ResearchSpace DP - CSIR KW - Eigenvalue distribution KW - Wishart matrices KW - PCA KW - Principal component analysis KW - Tracy-Widom distribution LK - https://researchspace.csir.co.za PY - 2012 SM - 1751-8628 SM - 1751-8628 T1 - Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix TI - Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix UR - http://hdl.handle.net/10204/6451 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record