dc.contributor.author |
Salmon, BP
|
|
dc.contributor.author |
Kleynhans, W
|
|
dc.contributor.author |
Van den Bergh, F
|
|
dc.contributor.author |
Olivier, JC
|
|
dc.contributor.author |
Marais, WJ
|
|
dc.contributor.author |
Wessels, Konrad J
|
|
dc.date.accessioned |
2012-05-07T09:00:17Z |
|
dc.date.available |
2012-05-07T09:00:17Z |
|
dc.date.issued |
2011-07 |
|
dc.identifier.citation |
Salmon, BP, Kleynhans, W, Van den Bergh, F, Olivier, JC, Marais, WJ and Wessels, KJ. 2011. Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, Canada, 24-29 July 2011 |
en_US |
dc.identifier.isbn |
978-1-4577-1003-2 |
|
dc.identifier.uri |
http://ieeexplore.ieee.org/application/enterprise/entconfirmation.jsp?arnumber=6049730
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/5839
|
|
dc.description |
2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, Canada, 24-29 July 2011 |
en_US |
dc.description.abstract |
Time series derived from the first two spectral bands of the MODerate-resolution Imaging Spectroradiometer (MODIS) land surface reflectance product can be modelled as a pair of triply (mean, phase and amplitude) modulated cosine functions. This paper proposes a meta-optimization approach for setting the parameters of the non-linear Extended Kalman Filter to rapidly and efficiently estimate the features for the pair of triply modulated cosine functions. The approach is based on a unsupervised search algorithm over an appropriately defined manifold using spatial and temporal information. Performance of the new method is compared to other applicable methods and is tested on the Gauteng province which is South Africa’s province with the fastest growing economy. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
IEEE |
en_US |
dc.relation.ispartofseries |
Workflow;8092 |
|
dc.subject |
Hellinger distance |
en_US |
dc.subject |
Kalman filter |
en_US |
dc.subject |
Time series analysis |
en_US |
dc.subject |
Unsupervised learning |
en_US |
dc.subject |
Spatial information |
en_US |
dc.title |
Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images |
en_US |
dc.type |
Conference Presentation |
en_US |
dc.identifier.apacitation |
Salmon, B., Kleynhans, W., Van den Bergh, F., Olivier, J., Marais, W., & Wessels, K. J. (2011). Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images. IEEE. http://hdl.handle.net/10204/5839 |
en_ZA |
dc.identifier.chicagocitation |
Salmon, BP, W Kleynhans, F Van den Bergh, JC Olivier, WJ Marais, and Konrad J Wessels. "Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images." (2011): http://hdl.handle.net/10204/5839 |
en_ZA |
dc.identifier.vancouvercitation |
Salmon B, Kleynhans W, Van den Bergh F, Olivier J, Marais W, Wessels KJ, Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images; IEEE; 2011. http://hdl.handle.net/10204/5839 . |
en_ZA |
dc.identifier.ris |
TY - Conference Presentation
AU - Salmon, BP
AU - Kleynhans, W
AU - Van den Bergh, F
AU - Olivier, JC
AU - Marais, WJ
AU - Wessels, Konrad J
AB - Time series derived from the first two spectral bands of the MODerate-resolution Imaging Spectroradiometer (MODIS) land surface reflectance product can be modelled as a pair of triply (mean, phase and amplitude) modulated cosine functions. This paper proposes a meta-optimization approach for setting the parameters of the non-linear Extended Kalman Filter to rapidly and efficiently estimate the features for the pair of triply modulated cosine functions. The approach is based on a unsupervised search algorithm over an appropriately defined manifold using spatial and temporal information. Performance of the new method is compared to other applicable methods and is tested on the Gauteng province which is South Africa’s province with the fastest growing economy.
DA - 2011-07
DB - ResearchSpace
DP - CSIR
KW - Hellinger distance
KW - Kalman filter
KW - Time series analysis
KW - Unsupervised learning
KW - Spatial information
LK - https://researchspace.csir.co.za
PY - 2011
SM - 978-1-4577-1003-2
T1 - Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images
TI - Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images
UR - http://hdl.handle.net/10204/5839
ER -
|
en_ZA |