dc.contributor.author |
Van Den Bergh, F
|
|
dc.contributor.author |
Udahemuka, G
|
|
dc.contributor.author |
Van Wyk, BJ
|
|
dc.date.accessioned |
2010-04-18T13:11:18Z |
|
dc.date.available |
2010-04-18T13:11:18Z |
|
dc.date.issued |
2009-07 |
|
dc.identifier.citation |
Van Den Bergh, F, Udahemuka, G and Van Wyk, BJ 2009. Potential fire detection based on Kalman-driven change detection. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12-17 July 2009, pp 1-4 |
en |
dc.identifier.isbn |
978-1-4244-3395-7 |
|
dc.identifier.uri |
http://hdl.handle.net/10204/4034
|
|
dc.description |
Copyright: 2009 IEEE, International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12-17 July 2009 |
en |
dc.description.abstract |
A new active fire event detection algorithm for data collected with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, based on the extended Kalman filter, is introduced. Instead of using the observed temperatures of the spatial neighbours of a pixel to detect anomalous temperatures, the new algorithm only considers previous observations at the current pixel. The algorithm harnesses the Kalman filter to obtain a prediction of the expected brightness temperature at a given location, which is then compared to the actual SEVIRI observation. An adaptive threshold is used to determine whether the observed difference is indicative of a potential fire event. Initial tests show that the performance of this method is comparable to that of the EUMETSAT FIR product. |
en |
dc.language.iso |
en |
en |
dc.publisher |
IEEE |
en |
dc.subject |
Fires |
en |
dc.subject |
Fire detection algorithms |
en |
dc.subject |
Spinning enhanced visible and infrared imager |
en |
dc.subject |
SEVIRI |
en |
dc.subject |
Kalman Filter |
en |
dc.subject |
EUMETSAT FIR |
en |
dc.subject |
Diurnal temperature cycle |
en |
dc.subject |
DTC |
en |
dc.subject |
Meteosat second generation |
en |
dc.subject |
Remote sensing |
en |
dc.subject |
Geoscience |
en |
dc.title |
Potential fire detection based on Kalman-driven change detection |
en |
dc.type |
Conference Presentation |
en |
dc.identifier.apacitation |
Van Den Bergh, F., Udahemuka, G., & Van Wyk, B. (2009). Potential fire detection based on Kalman-driven change detection. IEEE. http://hdl.handle.net/10204/4034 |
en_ZA |
dc.identifier.chicagocitation |
Van Den Bergh, F, G Udahemuka, and BJ Van Wyk. "Potential fire detection based on Kalman-driven change detection." (2009): http://hdl.handle.net/10204/4034 |
en_ZA |
dc.identifier.vancouvercitation |
Van Den Bergh F, Udahemuka G, Van Wyk B, Potential fire detection based on Kalman-driven change detection; IEEE; 2009. http://hdl.handle.net/10204/4034 . |
en_ZA |
dc.identifier.ris |
TY - Conference Presentation
AU - Van Den Bergh, F
AU - Udahemuka, G
AU - Van Wyk, BJ
AB - A new active fire event detection algorithm for data collected with the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, based on the extended Kalman filter, is introduced. Instead of using the observed temperatures of the spatial neighbours of a pixel to detect anomalous temperatures, the new algorithm only considers previous observations at the current pixel. The algorithm harnesses the Kalman filter to obtain a prediction of the expected brightness temperature at a given location, which is then compared to the actual SEVIRI observation. An adaptive threshold is used to determine whether the observed difference is indicative of a potential fire event. Initial tests show that the performance of this method is comparable to that of the EUMETSAT FIR product.
DA - 2009-07
DB - ResearchSpace
DP - CSIR
KW - Fires
KW - Fire detection algorithms
KW - Spinning enhanced visible and infrared imager
KW - SEVIRI
KW - Kalman Filter
KW - EUMETSAT FIR
KW - Diurnal temperature cycle
KW - DTC
KW - Meteosat second generation
KW - Remote sensing
KW - Geoscience
LK - https://researchspace.csir.co.za
PY - 2009
SM - 978-1-4244-3395-7
T1 - Potential fire detection based on Kalman-driven change detection
TI - Potential fire detection based on Kalman-driven change detection
UR - http://hdl.handle.net/10204/4034
ER -
|
en_ZA |