ResearchSpace

Epigenetics: beyond genes

Show simple item record

dc.contributor.author Fossey, A
dc.date.accessioned 2009-12-07T07:49:48Z
dc.date.available 2009-12-07T07:49:48Z
dc.date.issued 2009-06
dc.identifier.citation Fossey, A. 2009. Epigenetics: beyond genes. Southern Forests, Vol.71(2), pp 121-124 en
dc.identifier.issn 2070–2620
dc.identifier.uri http://www.ingentaconnect.com/content/nisc/sfjfs/2009/00000071/00000002;jsessionid=7ns41hkui7u7j.alice
dc.identifier.uri http://hdl.handle.net/10204/3807
dc.description Copyright: National Inquiry Services Centre (NISC) 2009. This is the author's version of the work. It is posted here by permission of National Inquiry Services Centre for your personal use. Not for redistribution. The definitive version was published in journal, Southern Forests, Vol. 71(2), pp 121-124 en
dc.description.abstract Gene regulatory processes lead to differential gene expression and are referred to as epigenetic phenomena; these are ubiquitous processes in the biological world. These reversible heritable changes concern DNA and RNA, their interactions, and chromatin-mediated and RNA-mediated mechanisms. DNA compaction is associated with gene inactivation in which chromatin is rendered either transcriptionally active or transcriptionally repressed. A ‘histone code hypothesis’ proposes that each histone combination defines different epigenetic states. RNA also participates in diverse regulatory activities. Three RNA silencing pathways have been identified in plants. Prolonged juvenility in trees greatly limits tree domestication and thus is of considerable interest to tree breeders. However, for production forestry delayed flowering is desirable. Transition to maturity has been associated with changes in the degree of DNA methylation and polyamine concentration. Tree aging is associated with the loss of morphogenic potentials, and has been shown to be associated with epigenetic control mechanisms. Meiotic imprinting renders maternal and paternal epigenders, particularly in the endosperm, and thus displays differential gene manipulations. Interspecific hybridisation and polyploid formation are practiced in many forestry species. When the specific endosperm balance number of a species is manipulated by changing the ploidy imprinting differences are exhibited, which is also demonstrated in interspecific hybrids. With the continued growth in knowledge of epigenetic phenomena, it is expected to play a major role in forestry breeding. en
dc.language.iso en en
dc.publisher National Inquiry Services Centre (NISC) en
dc.subject Epigenetics en
dc.subject Gene regulation en
dc.subject Chromatin en
dc.subject Histone code hypothesis en
dc.subject Posttranscriptional gene silencing en
dc.title Epigenetics: beyond genes en
dc.type Article en
dc.identifier.apacitation Fossey, A. (2009). Epigenetics: beyond genes. http://hdl.handle.net/10204/3807 en_ZA
dc.identifier.chicagocitation Fossey, A "Epigenetics: beyond genes." (2009) http://hdl.handle.net/10204/3807 en_ZA
dc.identifier.vancouvercitation Fossey A. Epigenetics: beyond genes. 2009; http://hdl.handle.net/10204/3807. en_ZA
dc.identifier.ris TY - Article AU - Fossey, A AB - Gene regulatory processes lead to differential gene expression and are referred to as epigenetic phenomena; these are ubiquitous processes in the biological world. These reversible heritable changes concern DNA and RNA, their interactions, and chromatin-mediated and RNA-mediated mechanisms. DNA compaction is associated with gene inactivation in which chromatin is rendered either transcriptionally active or transcriptionally repressed. A ‘histone code hypothesis’ proposes that each histone combination defines different epigenetic states. RNA also participates in diverse regulatory activities. Three RNA silencing pathways have been identified in plants. Prolonged juvenility in trees greatly limits tree domestication and thus is of considerable interest to tree breeders. However, for production forestry delayed flowering is desirable. Transition to maturity has been associated with changes in the degree of DNA methylation and polyamine concentration. Tree aging is associated with the loss of morphogenic potentials, and has been shown to be associated with epigenetic control mechanisms. Meiotic imprinting renders maternal and paternal epigenders, particularly in the endosperm, and thus displays differential gene manipulations. Interspecific hybridisation and polyploid formation are practiced in many forestry species. When the specific endosperm balance number of a species is manipulated by changing the ploidy imprinting differences are exhibited, which is also demonstrated in interspecific hybrids. With the continued growth in knowledge of epigenetic phenomena, it is expected to play a major role in forestry breeding. DA - 2009-06 DB - ResearchSpace DP - CSIR KW - Epigenetics KW - Gene regulation KW - Chromatin KW - Histone code hypothesis KW - Posttranscriptional gene silencing LK - https://researchspace.csir.co.za PY - 2009 SM - 2070–2620 T1 - Epigenetics: beyond genes TI - Epigenetics: beyond genes UR - http://hdl.handle.net/10204/3807 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record