ResearchSpace

Integration of the supersonic kernel function

Show simple item record

dc.contributor.author Van Zyl, Louwrens H
dc.date.accessioned 2008-05-08T08:05:28Z
dc.date.available 2008-05-08T08:05:28Z
dc.date.issued 1994-11
dc.identifier.citation Van Zyl, L.H. 1994. Integration of the supersonic kernel function. Journal of Aircraft, Vol. 31(6), pp. 1433-1435. en
dc.identifier.issn 0021-8669
dc.identifier.uri http://hdl.handle.net/10204/2245
dc.description.abstract The article discusses ways in which the integrals resulting from a zero-order discontinuous pressure distribution can be arranged in such a way that they can be solved by either normal quadrature or curve fitting followed by analytical integration is shown. This ability amplifies the panel method for unsteady supersonic flow and is essential to model the discontinuities that occur in reality, e.g., at the supersonic leading or trailing edges and control surface hinge lines. en
dc.language.iso en en
dc.publisher American Institute of Aeronautics and Astronautics en
dc.subject Supersonic kernal function en
dc.subject Integration en
dc.subject Zero-order discontinous pressure distribution en
dc.subject Analytical integration en
dc.subject Supersonic flow en
dc.subject Control surface hinge lines en
dc.title Integration of the supersonic kernel function en
dc.type Article en
dc.identifier.apacitation Van Zyl, L. H. (1994). Integration of the supersonic kernel function. http://hdl.handle.net/10204/2245 en_ZA
dc.identifier.chicagocitation Van Zyl, Louwrens H "Integration of the supersonic kernel function." (1994) http://hdl.handle.net/10204/2245 en_ZA
dc.identifier.vancouvercitation Van Zyl LH. Integration of the supersonic kernel function. 1994; http://hdl.handle.net/10204/2245. en_ZA
dc.identifier.ris TY - Article AU - Van Zyl, Louwrens H AB - The article discusses ways in which the integrals resulting from a zero-order discontinuous pressure distribution can be arranged in such a way that they can be solved by either normal quadrature or curve fitting followed by analytical integration is shown. This ability amplifies the panel method for unsteady supersonic flow and is essential to model the discontinuities that occur in reality, e.g., at the supersonic leading or trailing edges and control surface hinge lines. DA - 1994-11 DB - ResearchSpace DP - CSIR KW - Supersonic kernal function KW - Integration KW - Zero-order discontinous pressure distribution KW - Analytical integration KW - Supersonic flow KW - Control surface hinge lines LK - https://researchspace.csir.co.za PY - 1994 SM - 0021-8669 T1 - Integration of the supersonic kernel function TI - Integration of the supersonic kernel function UR - http://hdl.handle.net/10204/2245 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record