dc.contributor.author |
Van Zyl, Louwrens H
|
|
dc.date.accessioned |
2008-05-08T08:05:28Z |
|
dc.date.available |
2008-05-08T08:05:28Z |
|
dc.date.issued |
1994-11 |
|
dc.identifier.citation |
Van Zyl, L.H. 1994. Integration of the supersonic kernel function. Journal of Aircraft, Vol. 31(6), pp. 1433-1435. |
en |
dc.identifier.issn |
0021-8669 |
|
dc.identifier.uri |
http://hdl.handle.net/10204/2245
|
|
dc.description.abstract |
The article discusses ways in which the integrals resulting from a zero-order discontinuous pressure distribution can be arranged in such a way that they can be solved by either normal quadrature or curve fitting followed by analytical integration is shown. This ability amplifies the panel method for unsteady supersonic flow and is essential to model the discontinuities that occur in reality, e.g., at the supersonic leading or trailing edges and control surface hinge lines. |
en |
dc.language.iso |
en |
en |
dc.publisher |
American Institute of Aeronautics and Astronautics |
en |
dc.subject |
Supersonic kernal function |
en |
dc.subject |
Integration |
en |
dc.subject |
Zero-order discontinous pressure distribution |
en |
dc.subject |
Analytical integration |
en |
dc.subject |
Supersonic flow |
en |
dc.subject |
Control surface hinge lines |
en |
dc.title |
Integration of the supersonic kernel function |
en |
dc.type |
Article |
en |
dc.identifier.apacitation |
Van Zyl, L. H. (1994). Integration of the supersonic kernel function. http://hdl.handle.net/10204/2245 |
en_ZA |
dc.identifier.chicagocitation |
Van Zyl, Louwrens H "Integration of the supersonic kernel function." (1994) http://hdl.handle.net/10204/2245 |
en_ZA |
dc.identifier.vancouvercitation |
Van Zyl LH. Integration of the supersonic kernel function. 1994; http://hdl.handle.net/10204/2245. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Van Zyl, Louwrens H
AB - The article discusses ways in which the integrals resulting from a zero-order discontinuous pressure distribution can be arranged in such a way that they can be solved by either normal quadrature or curve fitting followed by analytical integration is shown. This ability amplifies the panel method for unsteady supersonic flow and is essential to model the discontinuities that occur in reality, e.g., at the supersonic leading or trailing edges and control surface hinge lines.
DA - 1994-11
DB - ResearchSpace
DP - CSIR
KW - Supersonic kernal function
KW - Integration
KW - Zero-order discontinous pressure distribution
KW - Analytical integration
KW - Supersonic flow
KW - Control surface hinge lines
LK - https://researchspace.csir.co.za
PY - 1994
SM - 0021-8669
T1 - Integration of the supersonic kernel function
TI - Integration of the supersonic kernel function
UR - http://hdl.handle.net/10204/2245
ER -
|
en_ZA |