dc.contributor.author |
Cebekhulu, Eric
|
|
dc.contributor.author |
Onumanyi, Adeiza J
|
|
dc.contributor.author |
Isaac, Sherrin J
|
|
dc.date.accessioned |
2022-05-29T10:08:29Z |
|
dc.date.available |
2022-05-29T10:08:29Z |
|
dc.date.issued |
2022-02 |
|
dc.identifier.citation |
Cebekhulu, E., Onumanyi, A.J. & Isaac, S.J. 2022. Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids. <i>Sustainability, 14(5).</i> http://hdl.handle.net/10204/12431 |
en_ZA |
dc.identifier.issn |
2071-1050 |
|
dc.identifier.uri |
https://doi.org/10.3390/su14052546
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/12431
|
|
dc.description.abstract |
The use of machine learning (ML) algorithms for power demand and supply prediction is becoming increasingly popular in smart grid systems. Due to the fact that there exist many simple ML algorithms/models in the literature, the question arises as to whether there is any significant advantage(s) among these different ML algorithms, particularly as it pertains to power demand/supply prediction use cases. Toward answering this question, we examined six well-known ML algorithms for power prediction in smart grid systems, including the artificial neural network, Gaussian regression (GR), k-nearest neighbor, linear regression, random forest, and support vector machine (SVM). First, fairness was ensured by undertaking a thorough hyperparameter tuning exercise of the models under consideration. As a second step, power demand and supply statistics from the Eskom database were selected for day-ahead forecasting purposes. These datasets were based on system hourly demand as well as renewable generation sources. Hence, when their hyperparameters were properly tuned, the results obtained within the boundaries of the datasets utilized showed that there was little/no significant difference in the quantitative and qualitative performance of the different ML algorithms. As compared to photovoltaic (PV) power generation, we observed that these algorithms performed poorly in predicting wind power output. This could be related to the unpredictable wind-generated power obtained within the time range of the datasets employed. Furthermore, while the SVM algorithm achieved the slightly quickest empirical processing time, statistical tests revealed that there was no significant difference in the timing performance of the various algorithms, except for the GR algorithm. As a result, our preliminary findings suggest that using a variety of existing ML algorithms for power demand/supply prediction may not always yield statistically significant comparative prediction results, particularly for sources with regular patterns, such as solar PV or daily consumption rates, provided that the hyperparameters of such algorithms are properly fine tuned. |
en_US |
dc.format |
Fulltext |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.uri |
https://www.mdpi.com/2071-1050/14/5/2546 |
en_US |
dc.source |
Sustainability, 14(5) |
en_US |
dc.subject |
Eskom |
en_US |
dc.subject |
Machine learning |
en_US |
dc.subject |
ML |
en_US |
dc.subject |
ML algorithms |
en_US |
dc.subject |
Hyperparameters |
en_US |
dc.subject |
Smart grid systems |
en_US |
dc.subject |
Fine tuned hyperparameters |
en_US |
dc.title |
Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids |
en_US |
dc.type |
Article |
en_US |
dc.description.pages |
26 |
en_US |
dc.description.note |
Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/
4.0/). |
en_US |
dc.description.cluster |
Defence and Security |
en_US |
dc.description.cluster |
Next Generation Enterprises & Institutions |
en_US |
dc.description.impactarea |
Inf and Cybersecurity Centre |
en_US |
dc.description.impactarea |
Advanced Internet of Things |
en_US |
dc.identifier.apacitation |
Cebekhulu, E., Onumanyi, A. J., & Isaac, S. J. (2022). Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids. <i>Sustainability, 14(5)</i>, http://hdl.handle.net/10204/12431 |
en_ZA |
dc.identifier.chicagocitation |
Cebekhulu, Eric, Adeiza J Onumanyi, and Sherrin J Isaac "Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids." <i>Sustainability, 14(5)</i> (2022) http://hdl.handle.net/10204/12431 |
en_ZA |
dc.identifier.vancouvercitation |
Cebekhulu E, Onumanyi AJ, Isaac SJ. Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids. Sustainability, 14(5). 2022; http://hdl.handle.net/10204/12431. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Cebekhulu, Eric
AU - Onumanyi, Adeiza J
AU - Isaac, Sherrin J
AB - The use of machine learning (ML) algorithms for power demand and supply prediction is becoming increasingly popular in smart grid systems. Due to the fact that there exist many simple ML algorithms/models in the literature, the question arises as to whether there is any significant advantage(s) among these different ML algorithms, particularly as it pertains to power demand/supply prediction use cases. Toward answering this question, we examined six well-known ML algorithms for power prediction in smart grid systems, including the artificial neural network, Gaussian regression (GR), k-nearest neighbor, linear regression, random forest, and support vector machine (SVM). First, fairness was ensured by undertaking a thorough hyperparameter tuning exercise of the models under consideration. As a second step, power demand and supply statistics from the Eskom database were selected for day-ahead forecasting purposes. These datasets were based on system hourly demand as well as renewable generation sources. Hence, when their hyperparameters were properly tuned, the results obtained within the boundaries of the datasets utilized showed that there was little/no significant difference in the quantitative and qualitative performance of the different ML algorithms. As compared to photovoltaic (PV) power generation, we observed that these algorithms performed poorly in predicting wind power output. This could be related to the unpredictable wind-generated power obtained within the time range of the datasets employed. Furthermore, while the SVM algorithm achieved the slightly quickest empirical processing time, statistical tests revealed that there was no significant difference in the timing performance of the various algorithms, except for the GR algorithm. As a result, our preliminary findings suggest that using a variety of existing ML algorithms for power demand/supply prediction may not always yield statistically significant comparative prediction results, particularly for sources with regular patterns, such as solar PV or daily consumption rates, provided that the hyperparameters of such algorithms are properly fine tuned.
DA - 2022-02
DB - ResearchSpace
DP - CSIR
J1 - Sustainability, 14(5)
KW - Eskom
KW - Machine learning
KW - ML
KW - ML algorithms
KW - Hyperparameters
KW - Smart grid systems
KW - Fine tuned hyperparameters
LK - https://researchspace.csir.co.za
PY - 2022
SM - 2071-1050
T1 - Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids
TI - Performance analysis of machine learning algorithms for energy demand–supply prediction in smart grids
UR - http://hdl.handle.net/10204/12431
ER -
|
en_ZA |
dc.identifier.worklist |
25669 |
en_US |