dc.contributor.author |
Nkosi, Funeka
|
|
dc.contributor.author |
Palaniyandy, Nithyadharseni
|
|
dc.contributor.author |
Raju, Kumar
|
|
dc.contributor.author |
Ozoemena, K
|
|
dc.date.accessioned |
2021-02-15T10:19:06Z |
|
dc.date.available |
2021-02-15T10:19:06Z |
|
dc.date.issued |
2020-10 |
|
dc.identifier.citation |
Nkosi, F., Palaniyandy, N., Raju, K. & Ozoemena, K. 2020. Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material. <i>Electroanalysis.</i> http://hdl.handle.net/10204/11764 |
en_ZA |
dc.identifier.issn |
1040-0397 |
|
dc.identifier.issn |
1521-4109 |
|
dc.identifier.uri |
http://hdl.handle.net/10204/11764
|
|
dc.description.abstract |
Commercialization of lithium-manganese rich oxides (LMR-NMC) cathodes for lithium-ion batteries is hindered by shortcomings such as severe capacity fade and poor rate capability. This work reveals the synergetic effect of the structure and morphology in reducing capacity fade and improving rate capability in Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 (LMNCA) cathode. The results show that the hybrid microwave irradiation-combustion synthesis results in smaller particles, increased lattice parameters, reduced transition metal oxidation states, and high Li-ion diffusion coefficients. These resulted in powders with reduced capacity fade and enhanced rate performance. LMNCA urea-mic exhibited the best electrochemical performance with a discharge capacity of 360 mAh/g and capacity retention of 88% after 50 cycles at 0.1 C. |
en_US |
dc.format |
Fulltext |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.uri |
https://doi.org/10.1002/elan.202060373 |
en_US |
dc.relation.uri |
https://onlinelibrary.wiley.com/doi/full/10.1002/elan.202060373 |
en_US |
dc.source |
Electroanalysis |
en_US |
dc.subject |
Cycle performance |
en_US |
dc.subject |
Lithium-manganese rich oxides |
en_US |
dc.subject |
Lithium-ion batteries |
en_US |
dc.subject |
Rate capability |
en_US |
dc.subject |
Synthesis |
en_US |
dc.title |
Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material |
en_US |
dc.type |
Article |
en_US |
dc.description.pages |
27 |
en_US |
dc.description.note |
© 2020 Wiley‐VCH GmbH. Due to copyright restrictions, the attached PDF file contains the accepted version of the published article. For access to the published item, please consult the publisher's website: https://doi.org/10.1002/elan.202060373 |
en_US |
dc.description.cluster |
Smart Places |
en_US |
dc.description.impactarea |
Electro Chemicals Energy Tech |
en_US |
dc.identifier.apacitation |
Nkosi, F., Palaniyandy, N., Raju, K., & Ozoemena, K. (2020). Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material. <i>Electroanalysis</i>, http://hdl.handle.net/10204/11764 |
en_ZA |
dc.identifier.chicagocitation |
Nkosi, Funeka, Nithyadharseni Palaniyandy, Kumar Raju, and K Ozoemena "Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material." <i>Electroanalysis</i> (2020) http://hdl.handle.net/10204/11764 |
en_ZA |
dc.identifier.vancouvercitation |
Nkosi F, Palaniyandy N, Raju K, Ozoemena K. Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material. Electroanalysis. 2020; http://hdl.handle.net/10204/11764. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Nkosi, Funeka
AU - Palaniyandy, Nithyadharseni
AU - Raju, Kumar
AU - Ozoemena, K
AB - Commercialization of lithium-manganese rich oxides (LMR-NMC) cathodes for lithium-ion batteries is hindered by shortcomings such as severe capacity fade and poor rate capability. This work reveals the synergetic effect of the structure and morphology in reducing capacity fade and improving rate capability in Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 (LMNCA) cathode. The results show that the hybrid microwave irradiation-combustion synthesis results in smaller particles, increased lattice parameters, reduced transition metal oxidation states, and high Li-ion diffusion coefficients. These resulted in powders with reduced capacity fade and enhanced rate performance. LMNCA urea-mic exhibited the best electrochemical performance with a discharge capacity of 360 mAh/g and capacity retention of 88% after 50 cycles at 0.1 C.
DA - 2020-10
DB - ResearchSpace
DP - CSIR
J1 - Electroanalysis
KW - Cycle performance
KW - Lithium-manganese rich oxides
KW - Lithium-ion batteries
KW - Rate capability
KW - Synthesis
LK - https://researchspace.csir.co.za
PY - 2020
SM - 1040-0397
SM - 1521-4109
T1 - Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material
TI - Influence of microwave irradiation and combustion fuels on the rate capability and cycle performance of Li1.2Mn0.52Ni0.13Co0.13Al0.02O2 layered material
UR - http://hdl.handle.net/10204/11764
ER - |
en_ZA |
dc.identifier.worklist |
24138 |
en_US |