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Abstract—This paper reports on the recognition of second language
(L2) isiXhosa speech produced by beginner level adult language learners.
The speech samples were produced and recorded during the development
of a Mobile Assisted Language Learning (MALL) application. The
application aimed to provide a means for students to practise their oral
skills and improve their pronunciation of isiXhosa. Automatically derived
proficiency indicators can enhance MALL applications by enabling
Computer Assisted Pronunciation Training (CAPT) and monitoring
students’ progress. However, the automatic recognition of low-proficient,
non-native speech is a particularly challenging task, especially for under-
resourced languages. Data augmentation strategies aim to increase the
quantity of training data, improve model robustness and avoid overfitting.
In this study we investigated whether directly adjusting the speed of raw
audio signals (simulating additional training speakers) improved phone
recognition accuracy for learner data. We present results for subspace
Gaussian mixture models (SGMMs) and deep neural networks (DNNs)
implemented using Kaldi. The under-resourced system’s tendency to
overfit on within-corpus test data is clearly illustrated and contrasted
with cross-corpus results for non-native data. Compared to first language
data, the speech rate of most language learners is considerably slower.
Our results indicate that adjusting the speed of the learner data improves
phone recognition accuracy.

Index Terms: speech data perturbation, speech recognition for under-
resourced languages, non-native speech recognition, low-proficient
learner speech, phone recognition accuracy, speech rate analysis

I. INTRODUCTION

South Africa is a multi-lingual country. It’s constitution recognises
11 official languages. In urban areas English is most often used as the
lingua franca, while the other official languages tend to dominate in
more rural areas. Professionals who receive their training in English
or one of the other dominant languages and who start their careers
in rural areas therefore often work in communities where people
communicate in a language that they are not proficient in.

The most prominent example of this phenomenon are the medical
professionals who receive their training in English or Afrikaans, but
who then have to perform community service at remote hospitals and
clinics where people are not fluent in either of the two languages.
Language differences therefore pose a significant challenge to suc-
cessful clinical communication. Many universities in the country are
trying to address this situation by including at least one course in an
additional language in medical curricula.

For instance, the undergraduate programmes offered by the Fac-
ulty of Medicine and Health Sciences at Stellenbosch University
all include clinical communication modules in either Afrikaans or
isiXhosa'!. The data that was used in this study was collected
during a project aimed at developing a Mobile Assisted Language
Learning (MALL) application to supplement the isiXhosa course.

IThese are the dominant languages in the Western Cape province where
the university is located.
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The application was designed to provide an opportunity for students
to practise their pronunciation in their own time and at their own
pace. It was also foreseen that the application would be extended to
incorporate Computer Assisted Pronunciation Training (CAPT).

The implementation of almost all measures that are used in CAPT
rely on accurately aligned learner data which depends on the avail-
ability of speech recognition technology in the target language [1],
[2]. IsiXhosa, like all the official languages of South Africa, is a
severely under-resourced language [3]. Very little speech and text
data is available to enable language technology development. The
aim of this study was therefore to test the ability of new state-of-the-
art modeling and data perturbation techniques to yield an automatic
speech recognition system for isiXhosa that can align learner data
accurately enough to enable the derivation of automatic proficiency
indicators from speech data.

II. BACKGROUND

Baseline isiXhosa automatic speech recognition (ASR) systems
have been developed before, but have always been evaluated on
test data that was collected in the same manner as the training
data [3]. Initial experiments with learner speech (L2) indicated that
the performance of a system based on Hidden Markov Models
(HMMs) trained with first language (L1) isiXhosa data degraded
substantially for out-of-corpus, L2 test data [4]. In addition to the
phenomena that are typically associated with L2 speech, an analysis
of the results showed that the acoustic differences between the
training and test data accounted for much of the observed drop
in performance. Applying cepstral mean and variance normalisation
(CMVN) at speaker level did improve the results to some extent, but
the phone recognition accuracy observed for the L2 data was still
much lower than the corresponding values for the within-corpus L1
data.

In the current study the HMM-based ASR system was replaced
with systems based on subspace Gaussian mixture (SGM) and Deep
Neural Network (DNN) models. In addition, the possibility of using
data perturbation to improve recognition accuracy for L1 as well as
L2 data was explored. Data augmentation has been proposed as a
means to improve recognition accuracy for large vocabulary ASR
tasks [5]. It’s potential to enhance ASR performance has also been
illustrated for low-resourced languages [6], [7], [8], [9]. One of the
aims of this study was to determine to what extent the reported
improvements in system performance generalise to other data sets.

We did not implement any specific proficiency indicators or error
detection methods. Instead, the focus was on the optimisation of
phone recognition accuracy for low-proficient, adult learners whose
speech is known to be difficult to process accurately using ASR [10].
This choice was motivated by the fact that most of the measures of



oral proficiency that can be derived automatically rely on an accurate
alignment of speech.

ITI. DATA

Table I gives an overview of the L1 and L2 data sets that were used
in this study. The L1 data was selected from the isiXhosa component
of the NCHLT speech database [3] and the L2 data was collected
from students at Stellenbosch University’s medical campus.

A. LI data

First language isiXhosa data was selected from the NCHLT
database of South African languages. The isiXhosa component of
the database comprises around 56 hours of data and includes speech
produced by 209 native speakers of the language. The data set is
balanced in terms of gender and the associated transcriptions include
29 130 unique types and 136 904 tokens. A pre-defined test set
was released with the NCHLT corpus. It includes 4 male and 4
female speakers. We used the same development set as in a previous
study [4], also consisting of 4 male and 4 female speakers.

After the selection of the development set 40 873 utterances
remained in the training data pool. The transcriptions of only 14 590
utterances within this set are unique types. The transcriptions of the
unique set occur multiple times for different speakers.

Data set # Utterances Duration (h:m)
NCHLT Train 40 873 49:23
NCHLT Development 3 008 03:47
NCHLT Test 2 770 03:06
L2A 2 167 02:05
L2B 986 01:07

TABLE I: Number of utterances and duration of each data set

To enable a comparison between the effects of adding more data
to the training set and data perturbation, we selected a subset of the
data that included the unique types for which examples produced
by at least three speakers appear in the corpus. As is shown in
Table II, selecting three speakers for each unique type at random
provided 12 927 recordings for the Train_3 data set. Train_3 contains
recordings from 189 speakers, 92 males and 97 females, with 5 498
and 7 429 recordings respectively.

One of the three examples of each type was randomly chosen
to compile a unique training set, Train_I. Train_I includes 4 309
utterances produced by 91 male and 96 female speakers.

B. L2 data

Two sets of learner data were collected. In each instance students
were asked to read target utterances and their responses were captured
using a data collection tool on a mobile telephone. The target
utterances were derived from the lecture notes of the isiXhosa course
the students were enrolled for.

The first set of learner data (L2A) was collected from students
who had completed the basic isiXhosa semester module. The second
L2 data set (L2B) was collected during a new group of students’
first semester of isiXhosa. These students represent adult beginners,
similar to the user group described in [10]. Each student read 15
target utterances as part of three different simulated usage sessions
during the course of the semester.

The L2A data set was collected under controlled conditions and
a technical supervisor was present during all the recording sessions.
The L2B set was compiled by means of simulated application usage.
Although the students were still asked to read target phrases, they
were free to move around and use the mobile devices without

supervision. An analysis of the L2 data indicated that the L2B set
contained many more empty recordings, background speech, reading
errors, laughing, whispering, etc. [4]. The L2B set is probably a better
representation of real world data, but also more difficult to process
automatically.

C. Data perturbation

1) LI data: Table II provides an overview of the data sets that
were created by applying data perturbation to the L1 training data. To
test the effect of data augmentation, the limited Train_I data set was
expanded to the same number of utterances as Train_3. Perturbing
the speed of each utterance using the Sox” utility, we simulated
two new utterances for each unique type in Train_I, resulting in
the Perturbed_1 data set. The speed adjustment not only changes
the duration of each utterance, but also the spectral frequencies,
effectively simulating additional speakers [5]. We re-sampled the
signal using the Sox speed function at speed factors 0.9 and 1.1
(90% and 110% of the original rate).

Data set # Utterances  Duration (h:m)
Train_1 4309 05:15
Perturbed_1 12 927 15:51
Train_3 12 927 15:35
Perturbed_3 38 781 47:36
Train_All 40 873 49:23
Perturbed_3_All 66 727 80.86

TABLE II: Number of utterances and duration of training sets with
and without data augmentation

Applying the same procedure to Train_3 resulted in six additional
utterances per unique type which were used to create the Perturbed_3
data set. Train_All corresponds to the complete NCHLT training set
in Table I and lastly we created a Perturbed_3_All set by adding only
the speed adjusted utterances of the Perturbed_3 data set to Train_All.

2) L2 data: Low-proficient learner speakers tend to articulate at
a slower rate than L1 speakers. Increasing the speed of these slower
L2 utterances can simulate a faster L1 rate of speech (ROS) to
some extent. Sox provides a fempo command to achieve this kind
of perturbation, ensuring that the pitch and spectral envelope of the
signal does not change [5]. We used it to adjust the tempo of slower
utterances with speed factors ranging from 1.05 to 1.3 (105% to 130%
original rate) in steps of 0.05.

IV. EXPERIMENTAL DESIGN
A. ASR system

We trained phone recognition systems using the open source Kaldi
toolkit and followed a training recipe based on the Wall Street Journal
and TIMIT example recipes [11]. In particular, we used a setup of
position independent phones, converting the training transcriptions to
a phone level representation so that each word label directly maps
to a single monophone label before training commences. We created
an ergodic phone loop by constructing a flat ARPA language model
consisting of equiprobable 1-grams.

We used a standard front-end, applying a 25ms Hamming window
with a 10ms shift between frames. The sample-frequency was set
to 16KHz. Performing a linear prediction coefficient (LPC) analysis
of default order 12, 13 cepstra were extracted (which includes CO).
Mean and variance normalisation were applied per speaker for each
data set (training as well as L1 and L2 test sets). Delta and double
delta coefficients were added.

Zhttp://sox.sourceforge.net/



The training features were used to estimate 3-state left to right
HMM triphone models. Input alignments for SGMM training were
derived from triphone models after incorporating linear discriminant
analysis (LDA), maximum likelihood linear transform (MLLT) train-
ing and speaker adaptive training (SAT).

The Kaldi nner2 setup was used to train DNN-HMM hybrid
models. As introduced in [12], the DNNs were trained using the p-
norm generalised maxout unit. Standard parameters were kept as is.
The parameter p was always set to two, training four hidden layers.
The initial and final learning rates were kept at the default values of
0.02 and 0.004, respectively.

B. Measuring recognition accuracy

Word error rate (WER) is a typical measure of recognition perfor-
mance given the one-best ASR hypothesis and human transcriptions.
Kaldi estimates this metric as a minimum edit distance [13] between
word labels in the ASR output and reference transcription. Three edit
operations, substitution, deletion and insertion transform one set of
labels into the other.

To compare our results with previous work performed using the
HTK toolkit [14] we calculated phone recognition accuracy as:

H-1

ACC = x 100% (€))

where H = N — D — S refers to the number of correct labels, S to
the number of substitution, D deletion and I insertion operations. /N
is the total number of labels in the defining transcriptions. We used
the HResults tool to estimate H, S, D and I and calculated N as
N = H + S+ D. Estimation of all accuracy measures used speech
phone labels only, ignoring silence labels. Since the Kaldi systems
in this study were based on phone rather than word labels, accuracy
was determined at phone level.

C. Optimising recognition performance

Adjusting either the acoustic or language-scale in Kaldi is effective
to search through different ratios of acoustic and language model con-
tributions. Setting the acoustic-scale (which is used during decoding)
close to the inverse of the language-scale setting provides good results
in general.

To find the best ratio between the acoustic and language model
contributions for the L1 data set, we varied the language-scale
parameter during scoring (integer values in the range of 1-20) and
kept the acoustic-scale parameter at the default (value of 0.1) setting.
In each experiment the language-scale adjustments were performed
on the L1 development set data only. The language-scale value
yielding the best accuracy was selected and kept constant for all
the measurements on the L1 and L2 test data.

In [15] it was pointed out that more insertion errors tend to occur
in slow speech segments. Therefore it should be possible to optimise
results further by adjusting the insertion penalty during decoding. For
the results presented in Section VI-C, we verified that reducing the
number of insertion errors further (by tweaking the language-scale
parameter) did not lead to any significant improvements of the results
at any speed factor threshold.

V. RATE OF SPEECH ANALYSIS

ROS is often used as an indicator of oral proficiency. In this study
ROS was calculated in the same way as in [4]: the ratio between the
number of the speech phones in an utterance and its total duration.
The ROS values were derived to compare L1 and L2 data. The results
of the comparison informed our data perturbation method for the L2
data.

A. Phone alignment

ROS estimation requires time alignments at phone level. To pro-
duce these alignments for the L1 and L2 data sets, we force aligned
the decoded phone labels. With the exception of the L1 training data,
a training graph containing only this single decoded sequence of
labels for each utterance was used. Alignment of the L1 training
data was accomplished with the reference (more accurate) training
graphs. A final decode then generated the required lattices from
which time alignments were extracted (using the ali-fo-phones Kaldi
implementation).

B. Distribution of utterances

The Train_3 histogram in Figure 1 depicts the distribution of the
per utterance ROS values derived from the training data (L1, =
8.46, o0 = 1.78). ROS histograms for the L2 utterances are shown in
the same figure (L2A in Figure 1(b) and L2B in Figure 1(c)). The
histograms show that the distributions of the L2A and L2B data sets
differ. The L2A histogram (LQATOS = 7.88, 0 = 1.31) resembles the
Train_3 histogram more closely than the L2B distribution (L2B,,s =
6.92, o = 1.40).

C. L2 speed factors

The data in Figure 1 shows that many of the L2 utterances were
articulated at a slower rate than the L1 training data, especially in the
L2B data set. As described in section III-C2, the tempo of utterances
could be perturbed to match the observed speech rate of the training
data better. To resemble L1,,s, a number of between 2 068 (DNN)
and 2 297 (SGMMs) utterances required speed factors greater than
1.0, given the total of 3 144 L2 utterances. The ROS of about 988
utterances was faster than L1,.s.

To investigate the merit of creating versions of the test utterances
with speech rates closer to Ll,.s, we applied different selection
thresholds. Perturbed versions of utterances were only selected when
the estimated ROS more closely represented L1,,s and without
exceeding the set threshold to control the size of the allowed speed
factors. In this manner the speed of slower utterances was increased
gradually and the effect measured for each speed factor step size of
0.5.

VI. RESULTS

Section VI-A contains a complete overview of phone recognition
accuracies for SGMM and DNN systems trained on different data
sets. In Section VI-B the effect of the difference in recording quality
between the L2A and L2B data sets is highlighted and Section VI-C
reports on the improvement in recognition performance as a result of
altering the speed of the L2 data.

A. Training data perturbation

As described in Section III-C, perturbing the speed of individ-
ual training utterances effectively simulates additional speakers. To
investigate the quality and utility of the new utterances as training
material, we compared phone recognition accuracies for the Train_1,
Perturbed_1, Train_3 and Perturbed_3 data sets defined in Sections
III-A and III-C. The recognition accuracies obtained by systems
trained on the Train_All and Perturbed_3_All data sets are also
reported. The results for an initial comparison, based on systems
with a flat 1-gram language model, are shown in Table III. The
table provides a system description (System) in terms of the training
data set and acoustic model type (in brackets) and lists the phone
recognition accuracy (ACC) for both L1 and L2 test sets.
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System L1 (ACC) L2 (ACC) s
Flat 1-gram ARPA =
Train_1 (SGMM) 77.26 64.67 § 74
Train_1 (DNN) 79.28 62.86 E
Perturbed_1 (SGMM) 7777 65.30 g W Train_1
Perturbed_1 (DNN) 79.22 61.52 g m Perturbed_1
Train_3 (SGMM) 79.33 67.35 5 e Train_3
Train_3 (DNN) 82.61 67.33 T W Perturbed_3
Perturbed_3 (SGMM) 79.58 6745 g 66 u Train_All
Perturbed_3 (DNN) 82.60 65.56 s o Perturbed_3_All
Train_All (SGMM) 80.12 67.23 g
Train_All (DNN) 84.47 69.41 62 - .
Perturbed_3_All (SGMM) 79.10 65.67
Perturbed_3_All (DNN) 83.24 68.52 Acoustic model

TABLE III: Comparing phone recognition accuracies (ACC) for
different systems

Table III shows that results did improve for the SGMM system
as a result of data perturbation (compare Train_1 SGMM and
Perturbed_I SGMM). In addition, the absolute cross-corpus (L2)
accuracy increased from 64.67% to 65.30%. The same trend was
not observed for the DNN system. With only 5 hours of training
data (see Table II), the DNN system did not outperform its SGMM
counterpart on L2. L1 modelling with the Perturbed_I training data
did not improve with a DNN estimator and a degradation for the L2
test set was observed compared to the Train_1I results.

The data perturbation technique clearly did not achieve a gain
of similar magnitude than real training data. Experiments Train_3
(SGMM) and Train_3 (DNN) yielded much better results than the
Perturbed_1 system. For this training set the DNN system continued
to outperform (82.61%) the SGMM system on the L1 test set. The
performance gap between these systems on L2 also disappeared.

The Perturbed_3 experiments revealed a much smaller effect of
data perturbation on the results. The performance increase of the
SGMMs on L2 data diminished: 0.1% absolute difference and DNN
recognition accuracy of L2 data degraded.

Training on all the available data (7rain_All), which include many
examples of some unique types, did not result in much gain over
the Train_3 SGMM systems. Using a DNN system provided the best
results (84.47 and 69.41 for L1 and L2 respectively).

Given the training data, it is possible to learn and incorporate
information on regularly observed phone sequences using n-gram
language models. To verify the utility that a stronger phone sequence
predictor might have, we repeated the Train_3 and Perturbed 3
experiments with a 2-gram model based on phone transcriptions of

Fig. 2: Phone recognition accuracies for SGMM and DNN systems
on the L2A data set

the Train_I data set. Table IV presents the corresponding results. In
comparison to the flat 1-gram model, trends remained very similar.
With the 2-gram model phone recognition accuracy for the L2 data
improved to 70.37%.

System L1 (ACC) L2 (ACC)
2-gram ARPA

Train_3 (SGMM) 83.06 70.34
Train_3 (DNN) 84.70 70.37
Perturbed_3 (SGMM) 83.34 70.34
Perturbed_3 (DNN) 84.67 69.84

TABLE IV: Comparing phone recognition accuracies (ACC) for 2-
gram language models

B. Speech quality

The observed differences in system performance between the L1
and L2 data could be ascribed to acoustic differences between the two
data sets as well as the quality of the L2 recordings. To investigate the
role of this effect more closely, we compared phone accuracies for the
L2A and L2B data separately. Figure 2 depicts the phone recognition
accuracies for 2 166 utterances of the L2A data set decoded with each
of the systems (using a flat 1-gram model) presented in Table III. The
same results are depicted for 978 L2B utterances in Figure 3.

The results show that the recognition rate for the more proficient
learners in the L2A data set is better than the accuracies measured
for the beginner level learners in L2B. The figure also indicates that
data perturbation improved results for the SGMM system evaluated
on the L2A data with the Perturbed_3 system achieving a similar
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result to training on all the NCHLT training data. In contrast, the
L2B Perturbed_3 result for the SGMM system degraded.

With a DNN estimator no Perturbed systems yielded an improve-
ment but, with sufficient training data, the DNN systems outperform
all of the SGMM systems.

C. Speed factor analysis

Figure 4 depicts phone recognition accuracies achieved for speech
factor thresholds up to the point where some utterances were played
30% faster than the original. The figure shows results for SGMM
and DNN systems trained on the Train_3 set using the flat 1-gram
language model only. The results show that, in general, increasing
the speed of slow L2 utterances proved beneficial.
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Fig. 4: L2 data: Phone recognition accuracies for SGMM and DNN
systems with different speed factor thresholds

Phone recognition accuracy (ACC)

At a speed factor threshold of 1.0 no perturbed utterances were
selected and the respective phone accuracies are therefore equal to
the values in Table III. We found that the DNN system marginally
outperformed the SGMM system at a speed factor threshold of 1.2,
resulting in an absolute improvement of 0.5%.

With regard to the difference between the L2A and L2B data,
Figures 5 and 6 illustrate the contribution of each set to the change
in recognition accuracy. The observed improvement is higher for the
L2B data than for the L2A data. This result could be expected given
the distributions in Figure 1a: there are more slower utterances in the
L2B set that stand to gain from the speed adjustment. Furthermore,
the DNN predictor outperformed the SGMM predictor on the L2B
data rather than the L2A data.

VII. DISCUSSION

Limited training data imposes unique constraints on ASR de-
velopment. The ability of systems to generalise well, given the
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Fig. 5: L2A data: Phone recognition accuracies for SGMM and DNN
systems with different speed factor thresholds.
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Fig. 6: L2B data: Phone recognition accuracies for SGMM and DNN
systems with different speed factor thresholds.

complexity of the speech signal, reduces with smaller training sets.
Furthermore, L2 speakers, and in particular low-proficient learner
speakers, introduce additional variability into the data. The aim of
our investigation was therefore to explore state-of-the-art modelling
techniques as applied to under-resourced ASR. In particular we
attempted to determine which methods generalise well to the L2 space
given these conditions, before exploring pronunciation differences
between the L1 and L2 speech.

Substantial pronunciation differences between L1 and L2 speech
are more difficult to recognise or predict with systems trained on
limited sets of L1 data. Recently, ASR systems trained on hundreds
of hours of training data have been shown to benefit from data
perturbation techniques. Not only did these techniques create more
training data, but it has been claimed that the robustness of such
systems also improved [5].

It may not be obvious why a particular data perturbation technique
produces an improved ASR system [6]. In terms of phone examples,
apart from phone confusion mistakes, it might make sense to sepa-
rately consider two types of variability that could both be expected to
affect the acoustic match for an L1 system recognising L2 speech: (1)
inter-speaker variability and (2) any remaining intra-phone variability.

With only 5 hours of training data, the Train_I system results
confirmed that data perturbation (15 hours) did indeed yield an
SGMM system that generalised better to L2. We also confirmed that
this amount of data was simply too limited to attempt DNN training
with standard parameters.

The situation improved much with 15 hours of real training data
(Train_3 systems). Although some overfitting of the DNN on L1
data clearly remained, in general the SGMM and DNN systems



generalised equally well to the L2 domain. As could be expected,
simply perturbing the speed of the Train_I utterances was not nearly
as effective as adding real data samples.

Comparing the Perturbed_3 and Train_3 system results, it was
clear that simulating additional phone examples from more speakers
(Perturbed_3) had very little effect on with-in corpus results and gen-
eralisation to L2 data degraded. The effect of intra-phone variability
seemed to dominate at this point. This observation seems to indicate
that more phone examples are required to improve results, rather than
more examples from different speakers. In [16] a similar insensitivity
with regard to the utility of more speakers to increase training data
was observed. Results for the Train_All (SGMM) system confirms
this prediction. Generalisation to L2 remains similar to the Train_3
system. Also, given the results for Train_All and Perturbed_3_All the
fact that no further gain could be obtained from data perturbation
is not surprising. The combination of a stronger DNN predictor
and more training examples of the same unique types significantly
improved results.

One reason why it is challenging to recognise L2 learner data is
that such data probably has more intra-phone variability. Mispronun-
ciation and alternative speech rates which, in turn, may lead to even
greater pronunciation differences, occur more commonly for learner
speakers. Accordingly, the results for the learner data in Section
VI-B showed that perturbed system performance is worst for beginner
level learners. In addition, the improvement in recognition accuracy
observed for the DNN system trained on the Train_All data set was
less significant for the L2B test data than the L2A data.

We attempted to limit the observed variability further by speeding
up slower utterances so that the speech of the perturbed test utterances
would have an ROS matching the training data more closely. This
strategy did result in some recognition improvement.

Separate investigation of the L2A and L2B test sets revealed
interesting differences. For the L2B data the DNN results seemed to
keep outperforming the SGMM, while this observation is reversed for
the L2A data. Compared to the SGMM, the DNN predictor seems
to generalise better to intra-phone variability within the L2B data.
This effect also benefits slightly from the type of limitation our data
perturbation technique imposed on the data. It seemed that adjusting
the ROS of the L2B data to the observed ROS for the phone examples
of the training data further reduced the inter-speaker differences,
while a large component of intra-phone variability remained.

VIII. CONCLUSIONS

Optimising an under-resourced ASR system to recognise low-
proficient learner data more accurately presents unique challenges. In
this study we performed an analysis of recognition accuracy for state-
of-the-art acoustic modelling and investigated the extent to which data
perturbation may reduce phone mismatch of L1 train and L2 test
data. Our results showed that speed perturbation of the training data
can improve phone recognition accuracy of L2 data under specific
conditions.

The speed perturbation techniques generate a particular type of
inter-speaker variability. Therefore, the results also showed that the
quality of real phone examples surpass the quality of the simulated
data. With sufficient examples, the DNN system provides improved
generalisation to both the L1 and L2 data of low quality. This finding
has not been reported for the NCHLT data to date.

L2 phone examples likely contain more intra-phone variability than
L1 data. With data perturbation it is possible to limit the difference

in speech rates observed for L1 and L2 data. Increasing the speech
rate of slower L2 utterances yielded improved recognition accuracy.

Future work on L2 recognition will focus on intra-phone variability.
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