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Abstract

This paper presents two new schemes for interpolating miss-
ing samples in satellite diurnal temperature cycles (DTCs). The
first scheme, referred to here as the cosine model, is an im-
provement of the model proposed in [2] and combines a cosine
and exponential function for modelling the DTC. The second
scheme uses the notion of a Reproducing Kernel Hilbert Space
(RKHS) interpolator [1] for interpolating the missing samples.
The application of RKHS interpolators to the DTC interpola-
tion problem is novel. Results obtained by means of computer
experiments are presented.

1. Introduction

Remote sensing data obtained from earth observing satellites is
frequently affected by cloud contamination, with about 50% of
the globe covered by cloud at any given moment. The presence
of clouds over a given pixel, even if the cloud cover is only par-
tial, usually renders the data associated with that pixel useless to
most applications outside of cloud studies. This paper presents
various techniques of interpolating values that have been lost
due to cloud cover.

Geostationary satellites are in a unique type of orbit that
enable them to observe the same location on the planet contin-
ually. For example, the Meteosat series of satellites produce
an image of the entire earth-disc every 30 minutes. Meteosat’s
successor, called Meteosat Second Generation (MSG), doubles
this observation frequency to produce one image every 15 min-
utes. At such high update frequencies it becomes possible to
build detailed representations of the diurnal cycle at the various
wavelengths that the satellites monitor. Figure 1 is a plot of a
typical diurnal temperature cycle over a period of 24 hours.

These Diurnal Temperature Cycles (DTC) are useful be-
cause there is a strong correlation between the observed bright-
ness temperature' of a pixel in the 3.9x wavelength, and the
more familiar Land Surface Temperature (LST). These DTC
models are also useful in their own right, and have been used in
applications such as land surface type classification [2, 3] and
fire detection [4].

Given that the diurnal temperature cycle (DTC) is a contin-
uous, smooth curve with a well-defined shape, it is possible to
interpolate the missing values caused by brief periods of cloud
cover (less than 4 hours) with a high degree of accuracy [5].

I'The brightness temperature of a pixel is a measure of its observed
intensity at a specified wavelength, but expressed as the temperature at
which a black body would have to be to emit an equivalent intensity of
radiation.
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Figure 1: Sample MSG diurnal temperature data and fitted
model.

This paper presents two new methods for interpolating the
missing or cloud-contaminated samples in Meteosat diurnal
temperature cycles. The first method is based on a pseudo-
empirical analytical model, and the other is based on Repro-
ducing Kernel Hilbert Space (RKHS) models.

Section 2 describes the cosine interpolation model, fol-
lowed by an overview of Hilbert space kernels in Section 3.

2. Cosine model

An analytical approximation to the diurnal temperature cycle
has been described by Schédlich e al. [3]. This model is re-
produced in Equation (1), with Table 1 providing a definition
of the symbols. Schédlich ez al.’s model consists of a single
cosine function fitted to the temperature peak of the day, fol-
lowed by an exponential term describing the decay in tempera-
ture. Figure 1 illustrates the general shape of a typical diurnal
temperature cycle.
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Schidlich ez al. used the Levenberg-Marquardt algorithm (see
[6] for a good introduction) to fit the parameterised cosine
model to the observed temperature values [3]. Robust fitting
techniques were employed to counter the effect of cloud con-
tamination, but the specific algorithm that was used in [3] is



Table 1: Definition of symbols for Cosine diurnal model

Symbol Meaning
Tov (K) residual temperature (at approx. sunrise)
Tu (K) temperature amplitude

w (minutes)
tm (solar time)
ts (solar time)
k (minutes)

half-period of cosine term
time of maximum temperature
start of decay function
attenuation constant

Table 2: Definition of symbols used in fitting functions

Symbol Meaning

a model parameter vector, e.g. (1o, Tq, . . ., k)
ti timestamp of sample ¢

O; observed brightness temperature of sample ¢

not mentioned by name — given that the Levenberg-Marquardt
algorithm was used to perform the fitting, it seems probable
that the Iteratively Reweighted Least Squares [7] algorithm was
used.

Various empirical trials with fitting Equation (1) to MSG
brightness temperature data has shown that the width of the
best-fitting cosine term on the rising slope of the DTC differs
from the width of the best-fitting cosine term on the falling
slope. This observation lead to the introduction of an addi-
tional term in the piecewise analytical model, resulting in the
new model presented in Equation (2). Note that the width pa-
rameter w has now been split into an w; width parameter for the
rising slope, and an w» width parameter for the falling slope.
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In order to fit the model presented in Equation (2) to the ob-
served data in a robust manner, an M-estimate [6] of the param-
eters was obtained.

Thus, instead of computing the usual sum-of-squared-errors
as defined in Equation (3) (see Table 2 for a definition of the
symbols), the robust error function presented in Equation (4)
was used.
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Press et al. recommend [6] that the Nelder-Mead simplex op-
timisation algorithm [8] should be used when fitting a model
using Equation (4). In practice, it was found that the Nelder-
Mead algorithm was not only more stable than gradient-based
algorithms, but also faster overall on this particular problem.

3. Reproducing Kernel Hilbert Space model

The idea of a function space reproduced by a single kernel func-
tion as well as the question of whether or not there exists a ker-
nel which will reproduce a specific function space has received
attention since the beginning of the 20th century and even be-
fore. Aronszajn [1], however, was the first to formally define the

notion of a Reproducing Kernel Hilbert space during the decade
1940 to 1950.

Today the applications of the theory of reproducing kernels
are widely spread in mathematical statistics and engineering ap-
plications. In the 1960’s (refer to [9],[10] and [11]) Parzen ap-
plied the theory of Reproducing Kernel Hilbert spaces to time
series analysis. In the early 1970’s Kailath ([12],[13],[14]) and
his coworkers applied this theory to problems encountered in
detection and estimation. More recently, the theory of repro-
ducing kernel Hilbert spaces has found applications in gener-
alised sampling theory, in wavelets and in graph matching (see
[15],[16] and [17] as well as references therein).

In its simplest form a Reproducing Kernel Hilbert Space
(RKHS) is a Hilbert space H equipped with an inner product
(+,+) and a kernel K(-,-) : R x R — Rsuch that K(¢,-) € H
for all ¢ € R and which has the reproducing property, i.e.

(F(), K(t,-) = F(t)

forallt € R. A consequence of the reproducing property is that
(K(s,-), K(t,-)) = K(s,t).

Suppose now we are given the input-output training data
set T = {t;, fi}}L, where f; = F(t;) + ¢; are noisy measure-
ments of some unknown function F(-) : R — R. The following
approximation problem is of interest: given 7 find the minimum
norm approximation F'(-) of F(-) in the RKHS H subject to the
constraints (F(-), K (t;,-)) = fi. It can be shown that F'(-) is
of the form [18]

F() = iai K(ilv ')7

where usually N, < N due to the presence of noise and the ker-
nel centres t; are inferred from 7° by means of some data reduc-
tion scheme [17]. The solution of this approximation problem
is then obtained as
a=G'f

where a = (a;), f = (f;) and G = (K(&;,t;)). Here G
denotes the pseudo inverse of the matrix G.

For the application discussed here we have chosen the
Dirichlet kernel [17] namely

sin{(n+ 3)u(s—1t)}

K(st) = sin(Cu(s—t)

where u is simply a dilation parameter and n the harmonic num-
ber. The motivation for this choice is, firstly, the Shannon sam-
pling theorem which says that an unknown bandlimited function
can be reconstructed from its samples provided that the samples
are sufficiently closely spaced and, secondly, the periodicity of
the data.

4. Experimental results

In this section, the interpolation accuracy of the two techniques
described in Sections 2 and 3 will be studied. Each method is
expected to interpolate the DTC through the missing samples.
The accuracy of the interpolation is measured using the Mean-
Squared-Error metric, defined by

1 & 9
MSE = — O; — R;)", 5
- ; ( ) )
where O; represents the observed brightness temperature value,
and R; represents the reconstructed/interpolated value.



4.1. Data set

The interpolation methods discussed in this paper have been de-
veloped to interpolate samples in a DTC that have been cor-
rupted by cloud contamination. It would be infeasible to test
these methods on DTC data that was really contaminated by
clouds, since the expected values for the cloud-contaminated
samples are unknown. Instead, cloud-free DTC data is used to
simulate missing samples by deleting segments of the test data;
this allows for direct comparison of the interpolated samples
with the real samples, as expressed in Equation (5).

Some variation in the shape of the DTCs can be observed
when comparing samples taken from different regions of South
Africa, since the shape of the DTC is influenced by — amongst
other things — the land cover type. The data set used in the ex-
periments below was constructed to compensate for this effect
to some degree by choosing 30 MSG pixels from six regions
selected randomly over South Africa.

For each of these pixels, sequences of between four and six
complete cycles (days) were selected from the complete data
set spanning dates from 2004-08-01 to 2004-08-29. Each of
these datasets were then subjected to a “cloud-simulation” filter
that removed segments to simulate periods of cloud cover last-
ing 4 hours. This duration was chosen to correspond to the gap
length used by Schédlich et al. [3], and corresponds to a seg-
ment of 16 consecutive samples. Through the application of the
cloud-simulation filter, a data set of 90 complete DTC cycles
was generated. This data set was thus composed of 30 unique
source sequences, each of which was processed with three dif-
ferent cloud-simulation filters that removed different segments
from each DTC cycle.

The first three complete cycles of each sequence was not af-
fected by the cloud-simulation filter, thus providing uncorrupted
data for the interpolating algorithm to train on.

4.2. Cosine model results

The results in this section were obtained by fitting Equations (1)
and (2) to diurnal temperature cycle time-series data. The mod-
els were fitted individually to each cycle, thus requiring all the
available samples of that cycle (excluding the ‘missing’ sam-
ples) in a batch. This makes the cosine model interpolation
technique unsuitable for real-time applications like fire detec-
tion [4], however, it is still useful as a benchmark interpolation
technique.

Table 3: Mean squared error values obtained by fitting both
the original, and the newly proposed cosine model to DTC data
(standard deviation in parentheses).

Model \ All samples Missing samples only

Eq. (1) | 1.93221(0.53349) 2.25000 (2.00443)

Eq. (2) | 0.73041 (0.19548)  0.59428 (0.43810)

Table 3 presents the Mean-Squared-Error (MSE) of the fit
produced by the two cosine models, computed over all 90 se-
quences in the data set. Two errors are reported: the MSE over
the entire data set, and the MSE over the missing samples only.
From these results it is clear that the new cosine model — repre-
sented by Equation (2) — is able to fit and interpolate the DTC
data with greater accuracy. The difference in MSE between the
two cosine models was confirmed to be significant at a 1% level
of confidence, using the Wilcoxon signed-rank test.

315 T T T T T T T

Interpolated curve
X Valid samples
o Missing samples | |

310 | X
e

Brightness temperature (K)

270 L L L L L L L L L
380 390 400 410 420 430 440 450 460 470 480

Time stamp (sample number)

Figure 2: Sample DTC with missing values, reconstructed
with the original cosine model, Equation (1). MSE = (1.4532,
0.62432).
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Figure 3: Sample DTC with missing values, reconstructed with
the new cosine model, Equation (2). MSE = (0.4490, 0.248).

Specific examples, chosen to illustrate the nature of the co-
sine interpolation methods, are shown in Figures 2 and 3, repre-
senting Equation (1) and Equation (2), respectively. Note how
the newly proposed model visibly fits better to the falling slope
of the cosine part of the cycle. Note that the two MSE values
in the caption correspond to the MSE over all samples, and the
MSE over only the missing samples, respectively.

4.3. RKHS model results

Considering the test data, the kernel centres were positioned at
intervals of approximately every 105 minutes yielding N, =
14. The value of n was taken to be 7. These values were used
for all the experiments performed.

In the first experiment the RKHS model was fitted to the
first cycle in the given sequence of cycles thereby obtaining
a reference model fit which may be considered as the RKHS
equivalent to the cosine model’s Equation (2). During the first
cycle of the sequence no clouds were present, i.e. the cycle was
complete without missing data. For each subsequent cycle this
reference RKHS model was kept fixed and then just scaled and
translated vertically to obtain the best least squares overlay. The
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Figure 4: Sample MSG diurnal temperature data and fitted
RKHS model for the first experiment. MSE = (0.5363, 0.7331).

motivation for this approach was that the amount of compu-
tation per cycle would be reduced significantly. The specific
example in Figure 4 shows the RKHS model—initially fitted
to cycle 1—overlaid onto cycle 5 of the same data sequence.
The measured mean square errors over all samples and over the
missing samples only are listed in the caption.

The same data sequence was used in the second experiment,
but here the RKHS model was fitted to cycle 5 after which the
mean square error was calculated over the complete cycle, as
well as separately over the missing samples only. The results
obtained are shown in Figure 5. The measured mean square
errors over all samples and over the missing samples only are
listed in the caption. Notice that the RKHS model was able
to accommodate the hump on the right hand side which can-
not be achieved with the cosine model. This hump appears to
deviate from the expected temperature (that predicted by the
pseudo-physical cosine model) by about 3K, so it is possible
that it could have been caused by a fire. The difference between
Figure 5 and Figure 4 can thus be used to detect anomalies such
as this hotspot.

5. Conclusion

The results presented in Section 4.2 support the hypothesis that
the cosine model is effective in reconstructing missing sam-
ples caused by brief periods of cloud cover. The evidence fur-
ther supports the hypothesis that the new cosine model pre-
sented here is a significant improvement over the previous co-
sine model. Techniques for extending the cosine model to sup-
port real-time operation are currently being investigated. This
would require building a ‘typical’ model over the most recent n
cycles, and then adapting this model to fit partial cycles on-line
as the data is received from the satellite, every 15 minutes.

The results presented in Section 4.3 clearly demonstrate the
ability of RKHS interpolators to interpolate data by first deriv-
ing a reference fit from a complete cycle which produces the
RKHS interpolator’s equivalent of the cosine model’s Equa-
tion (2). This reference model was fitted to remaining cycles by
merely scaling and translating the reference model optimally.
This approach produced good results while requiring signifi-
cantly fewer computations than required by the cosine model.
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Figure 5: Sample MSG diurnal temperature data and fitted
RKHS model for the second experiment. MSE = (0.1258,
0.2227).

It is expected that multi-scale and hybrid RKHS-based approxi-
mators [15] would produce still better results and will be inves-
tigated in the near future.

Efforts to extend the analysis of the performance of these
interpolation techniques to a an even larger data set are also
under way.
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