
JSON Schema for Attribute-based Access Control

for Network Resource Security

Gregory Linklater†, Christian Smith‡, James Connan†, Alan Herbert†, Barry Irwin†

†Rhodes University, Grahamstown, Eastern Cape, South Africa
1g12l4025@campus.ru.ac.za

3j.connan@ru.ac.za
4a.herbert@ru.ac.za
5b.irwin@ru.ac.za

‡MIT Connection Science, Cambridge, Massachusetts, USA
2csmth@mit.edu

Abstract—Attribute-based Access Control (ABAC) is an access
control model where authorization for an action on a resource
is determined by evaluating attributes of the subject, resource
(object) and environment. The attributes are evaluated against
boolean rules of varying complexity. ABAC rule languages
are often based on serializable object modeling and schema
languages as in the case of XACML which is based on XML
Schema. XACML is a standard by OASIS, and is the current de
facto standard for ABAC. While a JSON profile for XACML
exists, it is simply a compatibility layer for using JSON in
XACML which caters to the XML object model paradigm, as
opposed to the JSON object model paradigm. This research
proposes JSON Schema as a modeling language that caters to
the JSON object model paradigm on which to base an ABAC
rule language. It continues to demonstrate its viability for the
task by comparison against the features provided to XACML by
XML Schema.

Index Terms—JSON Schema; Access Control; Authorization;
Security; Attribute-based Access Control; ABAC; Internet of
Things; IoT; Server-to-Server; Machine-to-Machine; S2S; M2M;
Network Security

I. INTRODUCTION

Access control is a mechanism for ensuring that limited or

otherwise sensitive resources are shared only with those who

are authorized to access or use them. Many access control

models exist, however the topic of this research is focused on

Attribute-based Access Control (ABAC). ABAC architectures

and rule languages are based on schema definition and object

modeling languages. Mature languages such as XML [1] and

XML Schema [1] have an existing ABAC standard; JavaScript

Object Notation (JSON) does not.

JSON provides a number of advantages over XML. In

addition to increasing popularity (subjective), JSON is syn-

onymous with JavaScript which is both supported across all

major browsers for client-side scripting and usable on the

server side through NODEJS to build scalable services. JSON

is also – on average – 56x faster to deserialize than XML [2]

and XML is – on average – 74% larger than the equivalent

data represented in JSON [3]. This shows a significant and

immediate benefit in terms of bandwidth and processor usage

resulting from the use of JSON.

A. Problem Statement

The current de facto standard for ABAC is the eXtensible

Access Control Markup Language (XACML) [4]. XACML is

used to secure REST services, physical barriers, databases and

network resources as well as to prevent loss of data through

email, removable media and printing through subsequent

additional profiles [5]. XACML is based on and caters to

the XML and XML Schema object model paradigm [4]. A

JSON standard does exist for XACML [6], however this is a

compatibility layer which does not adequately provide for the

object model paradigm of JSON [7].

The need for ABAC is emphasised by the growing popu-

larity of the Internet of Things. Federated identity protocols

such as the Security Assertions Markup Language (SAML)

[8] and OpenID Connect (OIDC) [9] supply attributes to

multiple services using server-to-server communication where

the client consents to the release of personal information. The

attributes supplied are ideal for use in ABAC as they are

guaranteed to come from a trusted source.

B. Research Goal

JSON Schema [10], [11] is a schema definition and modeling

language for JSON that was designed for the JSON object

model paradigm. This research proposes the use of JSON

Schema as a modeling language on which to base an ABAC

rule language and demonstrates its viability for the task by

comparison against the features provided to XACML by XML

Schema.

Additional implementations of ABAC (such as one de-

signed with JSON in mind) will add choice and diversity to

the field for implementers while it becomes mature.

C. Structure

This paper will be structured in the following manner:

• Section II discusses background on access control mod-

els and their classification.

• Section III discusses the specific features and require-

ments of ABAC and functional completeness.

Page 360 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



• Section IV demonstrates that JSON Schema is function-

ally complete and compatible with the requirements of

ABAC.

• Section V discusses the viability of JSON Schema as a

replacement for XML Schema in the creation of a new

JSON-based ABAC standard. This section also discusses

possible future work that arose out of the conclusions

drawn in this document.

II. ACCESS CONTROL

ABAC

MACDAC

IBAC RBAC LBAC

Figure 1. Non-Exhaustive Access Control Model Hierarchy

More than half of recorded data breaches were perpetrated by

members internal to the organisation being breached, accord-

ing to the respondents of the FBI’s Crime Scene Investigation

(CSI) Cybercrime Survey of 2009 [12]. This suggests that the

perimeter security model is no longer sufficient to adequately

protect resources.

Access control enables the implementation of concepts

such as separation of duties and least privilege in security

policy. Logging and auditing provide the checks and balances

necessary to prove due diligence and due care in a court

of law [13], [14]. Identity providers and ABAC are capable

of providing the means to control access to any network or

domain-controlled resource in as fine-grained or as broad a

manner as is required by the resource owner. These together

provide a method of mitigating risk from internal threats [15].

A. Access Control Models

Popular access control models include role– and identity–

based access control (RBAC and IBAC) which have the

common problem of limited scalability. These models are

effective up to a limited number of users before having

to be replaced due to exponential growth in administrative

overhead. This inhibits an organisation’s growth unless the

access control model is replaced, which is costly in money

and time. Of all available access control models, ABAC is

considered to be the most versatile as it carries few limitations

and is scalable with negligible administrative overhead [15],

[16]. However, RBAC and IBAC still remain popular for small

applications due to the relative complexity of ABAC which

represents a higher barrier to entry in time and money.

ABAC is still maturing and is not authoritatively defined

despite literature on the topic existing for decades. To date,

the most authoritative definition of ABAC can be found in the

USA’s National Institute of Science and Technology (NIST)

guide to ABAC [17]. The guide defines ABAC as follows:

“An access control method where subject requests

to perform operations on objects are granted or

denied based on assigned attributes of the subject,

assigned attributes of the object, environment con-

ditions, and a set of policies that are specified in

terms of those attributes and conditions.” [17]

Models such as role– and lattice– based access control have

features that are aligned with the original discretionary and

mandatory access control models (DAC and MAC) respec-

tively, or a combination thereof, and therefore carry the same

limitations. Unlike these, ABAC can implement boolean rules

of varying complexity for access, based on attributes of the

subject, resource or environment; these are discussed further

in Section III. This allows one to implement any and multiple

of the preceding models or patterns simultaneously, without

any additional bespoke code [15], [17].

The relationship between a non-exhaustive list of access

control models is depicted in Figure 1. As ABAC allows

access control to be enacted based on any arbitrary set of

attributes from a trustworthy source, ABAC can implement

DAC and MAC styled rules [15]. ABAC is therefore the

superset of all access control models.

The derivative access control models share two things in

common:

1) They are a subset of ABAC as they enact access control

based on a particular subset of attributes. In the case of

role–, lattice– and identity– based access control, these

are the role, security clearance tag and unique identifier

of the subject attributes respectively [17].

2) They group authorizations to execute actions on re-

sources based on these attributes.

ABAC does not share the concept of grouping

authorizations in order to ease the administrative process

of authorizing subjects to complete actions. Instead, ABAC

defines rules that are applied per action per resource. These

rules and subsections of these rules can be reused, if desired,

for multiple actions on multiple resources and administration

of access instead happens at the level of the attributes of the

subject. In order to grant or revoke access to these actions,

one must simply modify the attributes of the subject to

immediately reflect their new status.

III. ABAC RULES

The functionality that defines ABAC is the ability to arrive at

an access decision by evaluating boolean logic rules against

a set of attributes pertaining to the subject, resource and

environment [16]. ABAC rules are intended to provide an ab-

straction for the end-user that allows them to define conditions

for access without requiring bespoke program logic. These

rules are typically expressed using language specifications

derived from data modeling languages which feature boolean

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 361



TABLE I
COMPLETE SET OF INPUT AND OUTPUT VALUES FOR BINARY LOGIC [18]

p q Hkpq a b c d e f g h a′ b′ c′ d′ e′ f ′ g′ h′

1 1 αk11 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0
1 0 αk10 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 1 αk01 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1
0 0 αk00 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0

validation logic embedded in the model itself. Additionally,

any ABAC rule language needs to be functionally complete

— as discussed in Section III-B — in order to evaluate any

combination of complex boolean logic.

A. Model Languages for ABAC Rules

Modeling languages, such as XML Schema, provide a logical

starting point for an ABAC rule language. XML already inter-

acts with data at the level required by ABAC in fulfilling its

bespoke purpose. The following functionality was determined

to be of interest to the topic:

1) Model: The data model or schema specifies the form and

metadata of data as well as metadata about the model

itself. With a model, one can define and expect the data

specified by a model in a given document that claims to

conform to that model. Complete model conformance is

not guaranteed as the data provided could have missing

or invalid data; this is solved by validation.

2) Data Interaction: Modeling languages provide a one-

to-one mapping with data that conforms to the defined

model. The metadata of the data in a particular field

can be found by looking up the name of the field in the

model and vise versa.

3) Validation: Successful model validation guarantees that

the data specified by the model is present and valid

where the model alone does not. If the validation

against the schema fails, by definition the data is not

valid. Model validation is often either provided within

the specification of the model language itself or in

subsequent derivative specifications.

4) Serialization: Although models are — by definition —

metadata, they are still data and need to be created,

stored, retrieved and transmitted like data. For this

reason, modeling languages tend to be based on the

serializable data representation language that they serve

to create models for, in order to inherit the serializable

property.

Although there are differences in intended use, ABAC

rules and models are functionally similar. XML Schema has

been successfully used as the base modeling language for

the XACML ABAC rule language [4]. The similarities and

differences in required functionality can be seen below:

1) Rule: ABAC rules are themselves models that specify

their own metadata and a subset of attributes required

for the rule evaluation. Unlike schemas, all of the

attributes specified are not required to make the access

request valid.

2) Attribute Interaction: ABAC rules use attributes as the

data they interact with. The required functionality is

equivalent.

3) Evaluation: Rule evaluation follows the same process

as validating data against a schema. The key difference

is failing the evaluation — for whatever reason — does

not cause an error as it would in schema validation,

instead it means that the access request must be denied.

The difference between schema validation and rule

evaluation is in the interpretation of the result.

4) Serialization: As ABAC rules are themselves models

and models are themselves data, they too require the

ability to be serialized. This ability is inherited from

the modeling language which further supports the claim

that modeling languages are a logical starting point for

an ABAC rule language.

Modeling languages that do not conform to these re-

quirements would not be suitable for use in an ABAC rule

language.

B. Functional Completeness

Wernick defines functional completeness [18] as follows:

Functionally Complete 1: Given a set of truth values B =
{0, 1}, variables p and q and a result α such that p, q, α ∈ B,

there exists 16 functions such that

H = {a, b, ..., h, a′, b′, ..., h′} (1)

where

a′(p, q) = ¬a(p, q), b′(p, q) = ¬b(p, q), ... (2)

and

Hk(p, q) = αk (3)

such that they produce the output for α given specific input

values for p, q as seen in Table I.

Functionally Complete 2: A set of complete functions (Ω)

is defined as the set of functions such that there exists two or

more functions F such that

F (Ωi(p, q),Ωj(p, q)) (4)

= Hk(p, q) = αk, Ω ⊂ H, ∃i, ∃j, ∃F, ∀k

for each value of k to produce the same output α per input

p, q as seen in Table I where H is determined by Equations 1,

Page 362 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



negation

non-implication implication

disjunction, conjunction

verity, equivalence falsity, non-equivalence

Figure 2. Wernick’s Functionally Complete Two-Function Sets [18]

2 and 3. Such a set of functions is said to be functionally

complete.

Functional completeness is a requirement for ABAC rules

to account for any possible combination of attributes with all

available boolean logic. It is therefore a requirement of the

validation functionality of the base modeling language to be

functionally complete to be eligible for use in an ABAC rule

language.

In 1942, Wernick published a proof of functional complete-

ness [18]; in his proof, he shows that specific two-function

sets are functionally complete. Figure 2 shows a diagram of

function combinations that yield functionally complete two-

function sets which can be read as follows:

Any function in one box, may be paired with a

function in another box to which it is joined by a

line, to form a functionally complete two-function

set.

Thus, according to the diagram in Figure 2, functional

completeness can be asserted by the following two-function

sets:

• negation, non-implication

• negation, implication

• negation, disjunction (OR)

• negation, conjunction (AND)

• non-implication, verity (a′(p, q) = p ∨ ¬p = 1)

• non-implication, equivalence (EQ)

• implication, falsity (a(p, q) = p ∧ ¬p = 0)

• implication, non-equivalence (NEQ)

IV. JSON SCHEMA

1 {

2 type: ’object’,

3 properties: {

4 subject: {

5 type: ’object’,

6 properties: {

7 active_project: {

8 type: ’string’,

9 enum: [’Top Secret’]

10 }

11 },

12 required: [’active_project’]

13 }

14 },

15 required: [’subject’]

16 }

17 // schema.validate({

18 // subject: {

19 // active_project: ’Top Secret’

20 // }

21 // }) => { validation: true, errors: []}

Listing 1. Example JSON Schema Rule

JSON Schema is a draft modeling language — V4 at the

time of writing — for the JSON serialized data format [10]

and provides similar functionality that XML Schema does for

XML. This research proposes JSON Schema as a language for

use in an ABAC rule language and demonstrates its viability

in comparison to XML [1] and XML Schema [19] which are

used in XACML [4].

A. Modeling Language Compatibility

As discussed in Section III-A, modeling languages provide

a logical starting point for an ABAC rule language due

to the common functionality between the two. Listing 1

shows an example of JSON Schema, without any additional

functionality, being used as a basic ABAC rule.

The rule can be read as follows:

Allow access if the subject’s active project is called

“Top Secret”.

In Section III-A certain conditions were synthesized for

modeling languages to be useful as a base syntax for an ABAC

rule language. JSON Schema cannot be considered a viable

candidate for use in a ABAC rule language for the JSON

object model paradigm if it does not meet those criteria. The

criteria and how JSON Schema satisfies each are discussed

below:

1) Model/Rule: JSON Schema defines JSON object mod-

els’ form and metadata in a similar way to XML

Schema does for XML. Both JSON Schema and XML

Schema provide a standard definition of their syntax

and allow models defined to be indefinitely nested with

subschemas. This nesting is what defines the form of the

data. The metadata for each field is determined through

the use of a variety of keywords on the leaf nodes. Both

languages also allow for subschemas to be references

to other schema documents by Universal Resource

Identifier (URI). Additionally, internal references may

be made with ref elements and JSON Pointers [20]

for XML Schema and JSON Schema respectively.

2) Data/Attribute Interaction: Both JSON Schema and

XML Schema provide object models that define named

fields, constraints and other metadata thereof. These

fields are the leaf nodes in schema documents. In the

validation process the name of a field in the data can be

used to determine the constraints and metadata of that

field from the model.

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 363



3) Validation/Evaluation: Both JSON Schema and XML

Schema have validation keywords which are specified

on each field (as required) as model metadata to define

constraints on the data that can be contained in that field.

These constraints are what allow ABAC rules to be

arbitrarily complex and therefore must be functionally

complete; for JSON Schema this is discussed in Sec-

tion IV-B. Most mature programming languages have

several competing JSON Schema and XML Schema

validation libraries that implement the functionality

defined in the relevant specifications.

4) Serialization: JSON Schema is based on JSON and

therefore inherits its serializable property. JSON is rep-

resented in plain text. Its syntax is sufficient to serialize

and deserialize any JSON document for transmission

and storage without any semantic loss.

B. Functional Completeness of JSON Schema

As discussed in Section III-B, one of the requirements for

ABAC rules is that the language used is functionally complete.

JSON Schema is functionally complete if it provides either

logical OR or AND and logical NOT operations. JSON Schema

Validation [11] provides the following relevant interfaces to

that end:

• anyOf: The anyOf keyword in JSON Schema is equiv-

alent to logical OR. This keyword accepts an array of

schema objects and returns a successful validation if the

value provided matches at least one schema in the given

array.

• allOf: The allOf keyword in JSON Schema is equiv-

alent to logical AND. This keyword accepts an array of

schema objects and returns a successful validation if the

value provided matches all of the schemas in the given

array.

• oneOf: The oneOf keyword in JSON Schema is equiv-

alent to logical XOR. This keyword accepts an array of

schema objects and returns a successful validation if the

value provided matches only one schema in the given

array.

• not: The not keyword in JSON Schema is equivalent to

a logical NOT. This keyword accepts a schema object and

returns a successful validation if the value provided does

not match the given schema object. The given schema

object may contain any of the JSON Schema Validation

keywords including those defined above and therefore

can be used to arbitrarily combine boolean logic.

Thus, according to the proof of functional completeness

by Wernick [18], JSON Schema is proven to be functionally

complete as it provides both logical OR and AND and logical

NOT operations which can be arbitrarily combined.

JSON Schema meets the modeling requirements discussed in

Section III-A, is functionally complete and provides similar

functionality to the JSON object model paradigm that XML

Schema does for XML. Given the alignment in functionality

between the two and the fact that XML Schema has been

successfully used in XACML, JSON Schema is therefore a

viable candidate for use in the creation of an ABAC rule

language for the JSON object model paradigm.

V. CONCLUSION

This research proposes JSON Schema as a modeling language

on which to base an ABAC rule language. In order for such

a proposal to be possible, JSON Schema must provide the

necessary functionality in order to be viable for the task. The

conditions of viability are discussed in Section III and the

viability of JSON Schema for such a task is discussed in

Section IV.

A. Viability of JSON Schema

JSON Schema is shown to fulfill all of the conditions

for viability as a base modeling language for an ABAC

rule language, including functional completeness which is

imperative for the arbitrarily complex access control rules of

ABAC.

JSON Schema was designed primarily for the JSON object

model paradigm and the use thereof is therefore superior to

the JSON Profile for XACML which, while it is a JSON

specification, caters to the XML object model paradigm.

While — functionally — JSON Schema and XML Schema

alone are capable of being used to enact ABAC in their respec-

tive paradigms, ABAC in the XML object model paradigm has

benefited from the existence of the XACML standard. Given

the mirrored functionality between XML Schema and JSON

Schema for the different paradigms, it is possible to replace

XML Schema with JSON schema in the creation of a new

ABAC standard. The new standard would take advantage of

the same benefits that XML Schema provides for XACML.

B. Findings

JSON Schema can be safely proposed as a base modeling

language for an ABAC rule language for the JSON object

model paradigm as it has been shown to be viable according

to the functionality required.

C. Future Work

Future work to extend this research will be targeted at the

creation and standardisation of ABAC for the JSON object

model paradigm. Although subjective, the wide use of the

XACML standard for the XML object model paradigm is

indicative that it provides a benefit to implementers and end-

users alike over the basic ABAC functionality that could

be provided by XML Schema alone. Particular benefits and

functionality that will be targeted in a new ABAC standards

are the following:

• Abstraction of a JSON-based ABAC rule language

through the use of JSON Schema and JSON Schema

Validation meta-schemas.

• Specification of inter-system communication to support

standardised interoperability.

Page 364 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



A new ABAC syntax will provide a simpler interface for

writing ABAC security policy and detract from the verbosity

of JSON Schema by providing defaults for JSON Schema

validation rules for use in ABAC. This would additionally be

complimented at a later stage by a policy creation tool that

would automate the writing of the rule set itself by allowing

end-users to specify the conditions of the policy through a

GUI.

The specification of inter-system communication as it is im-

plemented in XACML provides a number bespoke subsystems

that can be individually clustered for increased performance

where it is needed most. Additionally such a specification

allows for different implementations of such a system to

seamlessly interact. A new standard would similarly benefit

from this.

Additionally, the combined use of ABAC and verified

attributes1 could potentially improve network performance

through a significant decrease in traffic arising from autho-

rization requests.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Alex “Sandy” Pent-

land, Thomas Hardjono and MIT Connection Science for their

input and support of this research.

This work was undertaken in the Distributed Multimedia

CoE at Rhodes University, with financial support from Telkom

SA, Tellabs/CORIANT, Easttel, Bright Ideas 39, THRIP and

NRF SA (UID 90243). The authors acknowledge that opin-

ions, findings and conclusions or recommendations expressed

here are those of the author(s) and that none of the above

mentioned sponsors accept liability whatsoever in this regard.

REFERENCES

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible Markup Language (XML) 1.0 (Fifth Edition),” W3C

Standard, 2008, Available at: https://www.w3.org/TR/xml/. [Online].
Available: https://www.w3.org/TR/2008/REC-xml-20081126/

[2] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta,
“Comparison of JSON and XML Data Interchange For-
mats: A Case Study,” Caine, vol. 2009, pp. 157–162,
2009. [Online]. Available: https://pdfs.semanticscholar.org/8432/
1e662b24363e032d680901627aa1bfd6088f.pdf

[3] K. Hameseder, S. Fowler, and A. Peterson, “Performance analysis of
ubiquitous web systems for smartphones,” in Performance Evaluation of

Computer & Telecommunication Systems (SPECTS), 2011 International

Symposium on. IEEE, 2011, pp. 84–89.

[4] E. Rissanen, “eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0,” OASIS Standard, January
2013, Available at: http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html. [Online]. Available: http://docs.oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-cd-1-en.html

[5] B. Parducci and H. Lockhart, “XACML Data Loss Prevention / Network
Access Control (DLP/NAC) Profile Version 1.0,” OASIS Standard,
February 2015, Available at: http://http://docs.oasis-open.org/xacml/
xacml-3.0-dlp-nac/v1.0/cs01/xacml-3.0-dlp-nac-v1.0-cs01.html. [On-
line]. Available: http://http://docs.oasis-open.org/xacml/xacml-3.
0-dlp-nac/v1.0/cs01/xacml-3.0-dlp-nac-v1.0-cs01.html

[6] D. Brossard, “JSON Profile of XACML 3.0 Version 1.0,” OASIS

Standard, vol. 201401, 2014.

1Verified attributes are digital artifacts that contain data; the verity of which
can be determined cryptographically and independently of its most recent
origin.

[7] M. Nottingham. (2012, April) JSON or XML: Just Decide. Personal
Blog. Accessed: 2016-10-30. Available at: https://www.mnot.net/
blog/2012/04/13/json or xml just decide. [Online]. Available: https:
//www.mnot.net/blog/2012/04/13/json or xml just decide

[8] P. Hallam-Baker, “Security Assertions Markup Language,” OASIS Stan-

dard, vol. 14, pp. 1–24, 2001.
[9] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,

“OpenID Connect Core Specification,” The OpenID Foundation, 2014.
[10] A. Wright, “JSON Schema: A Media Type for Describing JSON

Documents,” IETF Standard, 2016, Internet Draft v4. [Online].
Available: http://json-schema.org/latest/json-schema-core.html

[11] A. Wright and G. Luff, “JSON Schema Validation:
A Vocabulary for Structural Validation of JSON,” IETF

Standard, 2016, Internet Draft v4. [Online]. Available:
http://json-schema.org/latest/json-schema-validation.html

[12] R. Richardson, “CSI computer crime and security survey,” Computer

Security Institute, vol. 1, pp. 1–30, 2008.
[13] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”

Communications Magazine, IEEE, vol. 32, no. 9, pp. 40–48, 1994.
[14] K. Kent and M. Souppaya, Guide to computer security log management:

recommendations of the National Institute of Standards and Technology

(NIST). US Department of Commerce, Technology Administration,
National Institute of Standards and Technology, 2006.

[15] E. Yuan and J. Tong, “Attributed based access control (ABAC) for web
services,” in Proceedings of IEEE International Conference on Web

Services and ICWS, 2005. IEEE, 2005.
[16] T. Priebe, W. Dobmeier, C. Schläger, and N. Kamprath, “Supporting

attribute-based access control in authorization and authentication in-
frastructures with ontologies,” Journal of Software, vol. 2, no. 1, pp.
27–38, 2007.

[17] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
and K. Scarfone, “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations,” NIST Special Publication, vol. 800, p.
162, 2014.

[18] W. Wernick, “Complete sets of logical functions,” Transactions of the

American Mathematical Society, vol. 51, no. 1, pp. 117–132, 1942.
[Online]. Available: http://www.ams.org/journals/tran/1942-051-00/
S0002-9947-1942-0005281-2/S0002-9947-1942-0005281-2.pdf

[19] S. Gao, C. M. Sperberg-McQueen, and H. S. Thompson, “W3C XML
Schema Definition Language (XSD) 1.1 Parts 1 and 2,” W3C Standard,
2012, Available at: https://www.w3.org/TR/xmlschema11-1/ and https:
//www.w3.org/TR/xmlschema11-2/. [Online]. Available: https://www.
w3.org/TR/xmlschema11-1/

[20] P. Bryan and K. Zyp, “JavaScript Object Notation (JSON) Pointer
Specification,” IETF Standard, 2011.

Gregory Linklater is a postgraduate student at Rhodes University. His re-
search interests include distributed and user-centric identity, verified attributes
and anonymous authorization. He is currently completing his Masters degree
in computer science with the help and support of MIT Connection Science.

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 365


