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ABSTRACT 
 
Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and 
incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam 
quality factor, M2.  In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been 
known for some time, but until recently have not been modeled as a complete physical optics system that allows the 
modal output to be determined as a function of the rotation angle of the prisms.  In this paper we consider the diffraction 
losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the 
specific modes to determine the laser output brightness as a function of the prism orientation.  
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1. INTRODUCTION 
 
Right angle prisms, often referred to as Porro prisms, have the useful property that all incident rays on the prism are 
reflected back parallel to the initial propagation direction, independent of the angle of incidence.  Thus an initial planar 
wavefront remains planar after reflection.  This property was initially exploited in Michelson interferometers to relax the 
tolerances on mis-alignment, and then proposed in 1962 by Gould et al1 as a means to overcome misalignment problems 
in optical resonators employing Fabry-Perot cavities, by replacing the end face mirrors with crossed roof prisms.  Lasers 
based on this principle have been developed over the years2-6 with a review of the basic concepts and literature for Porro 
prisms specifically found in [7].  Much of the theoretical work to date has focused on geometric methods to model the 
inverting properties of such resonators2-4 and polarization considerations to account for internal phase shifts and output 
polarization states6,7.  In [2] the prism was modeled as a ray deviator by replacing an imaginary mirror some distance 
behind the prism.  The model correctly accounted for the beam direction, but did not account for the complex field 
distribution found experimentally from the laser.  Even the physical optics models fail to account for the true field 
pattern found from such resonators3,8.  In [3] for example, the kernel of the Fresnel-Kirchoff diffraction integral contains 
only the OPL experienced by the beam, thus treating the prism as though it were acting like a perfect mirror, with an 
identical ABCD matrix representation albeit incorporating the inverting properties of the prisms.  This approach appears 
to be the preferred model for prisms7, even though it does not explain the complex transverse field patterns found in 
Porro prism resonators.  This is a recurring problem in the literature, with only a hint at a solution offered in [8,9], 
where it is proposed to treat the field patterns as a result of diffractive coupling between a linear combination of sub-
resonators.  Anan’ev9, in considering the theoretical properties of resonators with corner cube prisms, specifically 
mentions the influence of bevels of finite width at the prism edges as a possible explanation for tendency for 
independent oscillation at different parts of the cross-section (looking down the length of the resonator), but does not go 
on to develop this idea into a model which can be used to explain experimental results.  Recently10,11 we have 
successfully shown that a physical optics approach to the prisms can be formulated that correctly predicts all the salient 
features of the transverse modal patterns observed from such resonators.  With this model we are able, for the first time, 
to relate the properties of the laser beam to the modal patterns observed from such resonators.   Using this approach, we 
apply the model to laser brightness, since this is the often used parameter for quantifying the energy delivery capability 
of a laser at some distance away (usually in the far field).   
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2. RESONATOR MODEL 
 
The approach recently developed, which is summarized here but detailed fully elsewhere10,11, is to model a resonator 
containing crossed Porro prisms (Figure 1) as if the prisms are standard mirror elements, but with associated amplitude 
and phase screens.  This deviates from approaches followed by others in the past in that it allows a complete physical 
optics model to be developed from this premise.  In the case of a Porro prism, the amplitude screen introduces losses not 
only at the edges of the element, but also at the small but significant bevel where the prism surfaces meet.  The phase 
screen allows for the optical path length to vary as a function of the input position on the prism face, for example, to 
model hanging roof edges or fabrication errors on the prism surfaces.  With this approach, the diffractive effects of the 
prisms are taken into account, and the screens can be treated as intra-cavity elements that change the Eigenmodes of a 
standard mirror – mirror resonator.  In this section we will only consider the effects of the amplitude screens on the 
modal patterns observed from such resonators (by assuming that the prism faces are perfect). 

 

 
Figure 1: Illustration of the Porro prism resonator. 
 
2.1 Symmetry and repeatability 

In order to consider the symmetry and repeatability of the resonator modes, imagine that you observe the resonator 
along its length (i.e., looking down the length from one prism to the next), and that you could monitor the field as a 2 
dimensional array perpendicular to this axis.  We will assume, without any loss of generality, that the prism closest to 
the observer has an edge in the horizontal plane, and that the second prism is rotated at an angle of π/3 relative to the 
first.  We have a prior knowledge of how the mode will develop, and hence start with a beam location just in front of 
the first prism, as indicated in Figure 2a.  After reflection from the back prism the beam is traveling towards the 
observer, and in a position inverted around the prism axis (Figure 2b).  This beam is then inverted again about the front 
prism axis, as shown in Figure 2c.  This process continues until the complete pattern is created (Figure 2f), and the beam 
has returned to its starting position, i.e., beam 7 repeats the same sequence starting from Figure 2a again.   This 
argument can be applied to any arbitrary starting angle between the prisms, and similar patterns are generated for those 
angles that allow repeatability of the ray (some of which are shown in Figure 4).  From a physical optics perspective, the 
same picture can be built up, but in this case it is not the ray that is rotating about the prism edges, but rather the lossy 
prism edges themselves that are inverted on each pass. 
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(a) 
 

(b) 
 

 
(c) 

(d) 
 

(e) 
 

(f) 
 
Figure 2:  Looking down the resonator, along its length, with the nearest prism edge shown as the horizontal line.  Starting with a ray 
in (a) moving towards the back prism, it is inverted and returns again as shown in (b).  The return ray is then inverted off the front 
prism in (c) and the process repeats until after six passes (three round trips) the returning ray 6 (see (f)) returns onto ray 1 for the 
cycle to repeat.     
 
 

(a) (b) 
 
Figure 3:  The physical optics equivalent of Figure 2.  As a lossless field is reflected off the back prism, the edge introduces a loss 
across the field, as illustrated in (a) as a solid line.  This lossy field is then inverted off the front prism, which does two things: (1) it 
introduces its own loss edge onto the field, and (2) it inverts the loss from the first prism to create an “additional” loss edge on the 
field, thus leaving the field with three loss edges, as shown in (b).  This pattern will then repeat as the edges get inverted back on 
themselves.            
              
     One can shown from simple geometric arguments that the edges will start repeating on themselves after m passes if π 
- mθ = 0, where m is the number of completed round trips.  Also, since the inverting losses on the prism edges subdivide 
the field into two parts per pass, we will always have the condition that n = 2m, where n is the number of field sub-
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divisions.  These relationships lead to the following equation for the allowed angles of rotation of the prism edges 
relative to one another for repeatability after an integer number of round trips: 

nm
ππθ 2

==                                                                                (1) 

 
 2.2 Transverse mode patterns 
 
This model was incorporated into a full resonator model of a crossed Porro prism resonator, and the effects on the 
transverse modal pattern investigated.  The results are illustrated in Figure 4, where the stable prism angles are plotted 
with the corresponding number of expected “petals” due to the sub-division of the field.  Note that Equation (1) gives 
rise to a discrete set of angles, which become closely packed as the integer m increases.  Likewise, as m increases, the 
field becomes ever more sub-divided.  Although this is possible from a purely theoretical point of view, at some stage 
(depending on the resonator parameters such as wavelength, size of the prisms, internal apertures etc) the subdivisions 
will simply be too small to allow lasing to occur.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: A plot showing at which prism angles the resonator will generate stable petal patterns with the corresponding number of 
expected petals.  The graphic inserts are the numerically generated intensity profiles for the associated prism angles.  The 75o data 
(solid square) is an angle for which no petal patterns should form, and is inserted here for comparative purposes only. 
 
     The above analysis gives rise to angles at which petals appear, and angles at which they don’t.  When they do appear, 
the angle also determines the number of petals generated, as well as how many round trips it takes for repeatability.  
Even without any analysis, it is obvious that factors such as the laser beam quality, output energy and laser brightness 
will also vary with prism angle, and this is what we investigate in the next section. 
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3. LASER BRIGHTNESS 
 
Laser Brightness is a term often used in high energy laser delivery, or in systems for delivery of laser beams over very 
long distances (kilometer ranges).  The value of this parameter is that it allows the output from various sources to be 
compared directly, regardless of the final delivery optics used.    
 
3.1 Basic definitions 

The brightness of a light source is defined as the power (P) emitted per unit surface area (A), per unit solid angle (Ω): 
 

Ω
=
A
PB .                                                                  (2) 

 
     Following Siegman12, we define the quality of a laser beam using the M2 factor (laser beam quality factor), given as: 
 

 
λ
σπσ sxx

xM
42 = .                                                           (3) 

 
     Here σx is the second moment of the time averaged intensity profile of the laser beam I(x,y,z) and is given by the 
definition 
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while the spatial frequency term, σsx is analogously the second moment of the spatial frequency distribution Is(sx,sy,z) 
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     Here we have defined all parameters in one transverse co-ordinate (x-transverse direction), but of course similar 
relations hold for the other transverse co-ordinate.  In general the overall laser beam quality can be given as the product 
of the two co-ordinates, namely: 
 

yxMMM =2 .                                                                       (6) 
 
     For a circularly symmetric beam we may express the area of the laser beam as 22 4πσπω ==A  and the solid 
angle as 22 4 sπσπθ ==Ω .  If we now combine these definitions with Equation (2) and (3) we find 
 

 24λM
PB = .                                                                        (7) 

 
     In general, for non-circularly symmetric beams, the laser brightness may be written as 
 

222 λyxMM
PB = .                                                                    (8) 
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     Both Equations (7) and (8) can be interpreted in the same way: laser brightness increases if the power output from 
the laser increases, and if the beam quality from the resonator is enhanced.  Both these parameters are resonator 
dependent, and thus we can expect that in the case of the Porro prism, where the mode pattern changes as the prisms are 
rotated, that the output brightness would also change.   
 
3.2 Near and far field intensity distributions 

A plot of the near field and far field second moment beam size is shown in Figure 5.  It appears that for large prism 
angles the smaller number of petals gives rise to small second moments.  This can be expected since the second moment 
method weights the contributions far from centroid very heavily.  Thus more petals generate larger second moments. 
 
 

 
Figure 5: Plot of both near field and far field beam sizes for those angles at which petal patterns occur.  The 75o data is included again 
for comparison. 

     A plot of the near field and far field intensity distributions is shown in Figure 6.   

 

Figure 6: Plot of both near field (top row) and far field (bottom row) intensity distributions for 36o, 45o, 60o, 75o and 90o.  The fact 
that the patterns hold their shape suggests that they make be treated as the sum of Gaussian fields.  The 75o data is included again for 
comparison. 
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3.3 Laser beam quality (M2) 

The laser beam quality factor was calculated for all prism angles between 0o and 90o.  As the number of petals decrease, 
so (generally speaking) the M2 factor also decreases, indicating that fewer petals correspond to an “improved” beam, as 
shown in Figure 7. The 75o data is again shown, and here it is clear that the M2 increases for non-petal pattern angles 
relative to those petal pattern generating angles near it.   
 

 
Figure 7:  Beam quality factor for various those prism angles that generate repeating petal patterns. 
 
3.4 Laser brightness 

Finally, combining the results just shown we can generate a prediction of the laser brightness as a function of the prism 
angle.  Figure 8 shows the normalized brightness plot (90o data normalized to 1) for those angles which generate petal 
patterns.   
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Figure 8:  Laser brightness for those angles that generate petal patterns.   
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     Because this resonator was modeled without any gain, the power content was determined as the inverse of the round 
trip losses after the mode has stabilized (therefore assuming that all the circulating power is deposited into the internal 
losses).  It is also assumed that the output coupler of this system is not polarization dependent, which is sometimes the 
case, but not always.  It is clear from the graph that the small the number of petal patterns, the higher the laser 
brightness. 
 

4. CONCLUSION 
 
A model for a crossed Porro prism resonator that allows one to investigate all the output laser beam characteristics has 
been discussed.  The model has been applied to the particular problem of output laser brightness from such resonators, 
where it has been shown that the brightness is strongly influenced by the angle between the two prism edges.  At those 
angles at which petal patterns are observed, one finds an increase in the laser brightness relative to nearby non-petal 
pattern generating angles.  There also appears to be a trend towards improved brightness and beam quality for those 
angles at which fewer petals are generated.  
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