
Descriptional Complexity of Non-Unary
Self-Verifying Symmetric Difference Automata

Laurette Marais1,2 and Lynette van Zijl1

1 Department of Computer Science, Stellenbosch University, South Africa
2 Meraka Institute, CSIR, South Africa

Abstract. We show that, for every n ≥ 2, there is a regular language
Ln accepted by a non-unary self-verifying symmetric difference automa-
ton with n states, such that its equivalent minimal deterministic finite
automaton has 2n−1 states.

1 Introduction

In [1], we extended the notion of self-verification (SV) to symmetric difference
nondeterministic finite automata (XNFA). We established an upper bound of
2n − 1 on the state complexity of SV-XNFA in the case of a unary alphabet,
and showed that the bound is not tight. A lower bound of 2n−1 − 1 was also
established for the unary case. We showed this to be a tight bound in [2], where
we also introduced a more general notion of acceptance for SV-XNFA. In this
paper, we consider non-unary alphabets, and we give an upper bound of 2n − 1
and a lower bound of 2n−1.

2 Preliminaries

An NFA N is a five-tuple N = (Q,Σ, δ,Q0, F ), where Q is a finite set of states, Σ
is a finite alphabet, δ : Q×Σ → 2Q is a transition function (where 2Q indicates
the power set of Q), Q0 ⊆ Q is a set of initial states, and F ⊆ Q is the set of
final, or acceptance, states. The transition function δ can be extended to strings
in the Kleene closure Σ∗ of the alphabet:

δ′(q, w0w1 . . . wk) = δ(δ(. . . δ(q, w0), w1), . . . , wk) .

For convenience, we write δ(q, w) to mean δ′(q, w).
An NFA N is said to accept a string w ∈ Σ∗ if q0 ∈ Q0 and δ(q0, w) ∈ F ,

and the set of all strings (also called words) accepted by N is the language
L(N) accepted by N . Any NFA has an equivalent DFA which accepts the same
language. The DFA equivalent to a given NFA is found by performing the subset
construction [3]. In essence, the subset construction keeps track of all the states
that the NFA may be in at the same time, and forms the states of the equivalent
DFA by a grouping of the states of the DFA. In short,

δ(A, σ) =
⋃
q∈A

δ(q, σ)
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for any A ⊆ Q and σ ∈ Σ.

2.1 Symmetric difference automata (XNFA)

A symmetric difference NFA (XNFA) is defined exactly as an NFA, except that
the DFA equivalent to the XNFA is found by taking the symmetric difference
(in the set theoretic sense) in the subset construction. That is, for any two sets
A and B, the symmetric difference is given by ⊕(A,B) = (A∪B)\ (A∩B). The
subset construction is then applied as

δ(A, σ) =
⊕
q∈A

δ(q, σ)

for any A ⊆ Q and σ ∈ Σ.
For clarity, the DFA equivalent to an XNFA N is termed an XDFA and

denoted with ND (with corresponding QD, δD, Q0D and FD). It is customary to
require that an XDFA final state consist of an odd number of final XNFA states,
as an analogy to the symmetric difference set operation [4] – this is known as
parity acceptance.

Given parity acceptance, XNFA have been shown to be equivalent to weighted
automata over the finite field of two elements, or GF(2) [4,5]. For an XNFA N =
(Q,Σ, δ,Q0, F ), the transitions for each alphabet symbol σ can be represented as
a matrix over GF(2). Each row represents a mapping from a state q ∈ Q to a set
of states P ∈ 2Q. P is written as a vector with a one in position i if qi ∈ P , and a
zero in position i if qi 6∈ P . Hence, the transition table is represented as a matrix
Mσ of zeroes and ones (see Example 1). This is known as the characteristic or
transition matrix for σ of the XNFA.

Initial and final states are similarly represented by vectors, and appropriate
vector and matrix multiplications over GF(2) represent the behaviour of the
XNFA3. For instance, in the unary case we would have a single matrix Ma that
describes the transitions on a for some XNFA with n states. We encode the initial
states Q0 as vector of length n over GF(2), namely v(Q0) = [q00 q01 ... q0n−1 ],
where q0i = 1 if qi ∈ Q0 and 0 otherwise. Similarly, we encode the final states
as a length n vector v(F ) = [qF0

qF1
... qFn−1

]. Then v(Q0)M is a vector that
encodes the states reached after reading the symbol a exactly once, and v(Q0)Mk

a

encodes the states reached after reading the symbol a k times. The weight of a
word wk of length k is given by

∆(wk) = v(Q0)Mkv(F )T .

We can say that Ma represents the word a, and Mak = Mk
a represents the word

ak. In the binary case, we would have two matrices, Ma for transitions on a
and Mb for transitions on b. Reading an a corresponds to multiplying by Ma,
while reading a b corresponds to multiplying by Mb. Let Mw be the result of the

3 In GF(2), 1 + 1 = 0.
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appropriate multiplications of Ma and Mb representing some w ∈ {a, b}∗, then
the weight of w is given by ∆(w) = v(Q0)Mwv(F )T .

We now show that, in the unary case, a so-called change of basis is possible,
where for some n × n transition matrix Ma of an XNFA and any non-singular
n×n matrix A, M ′a = A−1MaA is the transition matrix of an equivalent XNFA
with v(Q′0) = v(Q0)A and v(F ′)T = A−1v(F )T . For any word wk of length k,
we have the following:

∆′(wk) = v(Q′0)M ′ka v(F ′)T

= v(Q0)A(A−1MaA)kA−1v(F )T

= v(Q0)Mk
a v(F )T

= ∆(wk) .

This also applies to the binary case. For some XNFA N , let Mw =
∏k
i=1Mσi

represent a word w = σ1σ2...σk, where Mσi
= Ma if σi = a, and similarly for

b. Now, let N ′ be an XNFA whose transition matrices are M ′a = A−1MaA and
M ′b = A−1MbA for some non-singular A. Then w is represented by

M ′w =

k∏
i=1

M ′σi

= M ′σ1
M ′σ2

...M ′σk

= (A−1Mσ1
A)(A−1Mσ2

A)...(A−1Mσk
A)

= A−1Mσ1
Mσ2

...Mσk
A

= A−1MwA .

And so the weight of any word wk on N ′ is

∆′(w) = v(Q′0)M ′wv(F ′)T

= v(Q0)A(A−1MwA)A−1v(F )T

= v(Q0)Mwv(F )T

= ∆(w) .

Note that the above discussion does not rely on the fact that there are only two
alphabet symbols, and so applies in general to the n-ary case as well.

2.2 Self-verifying automata (SV-NFA)

Self-verifying NFA (SV-NFA) [6–8] are automata with two kinds of final states,
namely accept states and reject states, as well as neutral non-final states. It is
required that for any word, one or more of the paths for that word reach a single
kind of final state, i.e. either accept states or reject states are reached, but not
both. Consequently, self-verifying automata reject words explicitly if they reach
a reject state, in contrast to NFA, where rejection is the result of a failure to
reach an accept state.
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Definition 1. A self-verifying nondeterministic finite automaton (SV-NFA) is
a 6-tuple N = (Q,Σ, δ,Q0, F

a, F r), where Q,Σ, δ and Q0 are defined as for
standard NFA. F a ⊆ Q and F r ⊆ Q are the sets of accept and reject states,
respectively. The remaining states, that is, the states belonging to Q \ (F a ∪F r),
are called neutral states. For each input string w in Σ∗, it is required that there
exists at least one path ending in either an accept or a reject state; that is,
δ(q0, w) ∩ (F a ∪ F r) 6= ∅ for any q0 ∈ Q0, and there are no strings w such that
both δ(q0, w) ∩ F a and δ(q1, w) ∩ F r are nonempty, for any q0, q1 ∈ Q0.

Since any SV-NFA either accepts or rejects any string w ∈ Σ∗ explicitly, its
equivalent DFA must do so too. The path for each w in a DFA is unique, so
each state in the DFA is an accept or reject state. Hence, for any DFA state d,
there is some SV-NFA state qi ∈ d such that qi ∈ F a (and hence d ∈ F aD) or
qi ∈ F r (and hence d ∈ F rD). Since each state in the DFA is a subset of states
of the SV-NFA, accept and reject states cannot occur together in a DFA state.
That is, if d is a DFA state, then for any p, q ∈ d, if p ∈ F a then q /∈ F r and
vice versa.

2.3 Self-verifying symmetric difference automata (SV-XNFA)

In [1], self-verifying symmetric difference automata (SV-XNFA) were defined as
a combination of the notions of symmetric difference automata and self-verifying
automata, but only the unary case was examined. We now restate the definition
of SV-XNFA in order to present results on larger alphabets in Section 4. Note,
however, that the definition is slightly amended: in [1], the implicit assumption
was made that no SV-XNFA state could be both an accept state and a reject
state. This assumption is explored in detail for the unary case in [2], but for our
current purposes it suffices to say that such a requirement removes the equiva-
lence between XNFA and weighted automata over GF(2), which is essential for
certain operations on XNFA, such as minimisation [5]. This implies that parity
acceptance applies to SV-XNFA, where the condition for self-verification (SV-
condition) is that for any word, an odd number of paths end in either accept
states or reject states, but not both. In terms of the equivalent XDFA, this is
equivalent to requiring that any XDFA state contain either an odd number of
accept states or an odd number of rejects states, but not both. If an XNFA state
is both an accept state and a reject state, it contributes to both counts.

Definition 2. A self-verifying symmetric difference finite automaton (SV-XNFA)
is a 6-tuple N = (Q,Σ, δ,Q0, F

a, F r), where Q,Σ, δ and Q0 are defined as for
XNFA, and F a and F r are defined as for SV-NFA, except that F a∩F r need not
be empty. That is, each state in the SV-XDFA equivalent to N must contain an
odd number of states from either F a or F r, but not both, and some SV-XNFA
states may belong to both F a and F r.

The SV-condition for XNFA implies that if a state in the SV-XDFA of an SV-
XNFA N contains an odd number of states from F a, it may also contain an
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even number of states from F r, and hence belong to F aD, and vice versa. An
SV-XDFA state may contain any number of neutral states from N .

The choice of F a and F r for a given SV-XNFA N is called an SV-assignment
of N . An SV-assignment where either F a or F r is empty, is called a trivial SV-
assignment. Otherwise, if both F a and F r are nonempty, the SV-assignment is
non-trivial.

3 XNFA and linear feedback shift registers

In [9] it is shown that unary XNFA are equivalent to linear feedback shift reg-
isters (LFSRs). Specifically, a matrix M with characteristic polynomial c(X) is
associated with a certain cycle structure of sets of XNFA states (or of XDFA
states), and the choice of Q0 determines which cycle represents the behaviour
of a specific unary XNFA. The cycle structure is induced by c(X), so any ma-
trix that has c(X) as its characteristic polynomial has the same cycle structure,
although the states ocurring in the cycles differ according to each specific matrix.

For the n-ary case, the transition matrix for each symbol is associated with
its own cycle structure, and the choice of Q0 determines which cycle is realised
in the n-ary XNFA for each symbol. There are 2n − 1 possible choices for Q0

(we exclude the empty set). Evidently, the cycles associated with each symbol
might overlap, and so the structure of the n-ary XNFA would not be cyclic
itself, although the transitions for each symbol would exhibit cyclic behaviour.
Specifically, for an n-ary XNFA N and some symbol σ ∈ Σ, we refer to the
cycle structure of N on σ as the cycle structure resulting from considering only
transitions on σ. Our main results will be derived from examining the cycle
structure induced by each symbol of the alphabet of the automaton, as well as
the ways in which the cycles overlap.

For any c(X) = Xn+ cn−1X
n−1 + ...+ c1X+ c0 there is a companion matrix

M of the form given below, such that c(X) = det(XM − I), where I is the
identity matrix. We say that M is in canonical form.

M =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 . . . 1
c0 c1 . . . cn−2 cn−1


In the next lemma, it will be convenient to represent XDFA states ds ⊆ Q as
s = 〈sn−1, sn−2, ..., s1, s0〉, where si = 1 if qi ∈ ds and 0 otherwise. The lemma
is adapted from [10] on the basis of the equivalence between unary XNFA and
LFSRs.

Lemma 1. Let Mσ be a transition matrix representing transitions on σ for some
XNFA N , with characteristic polynomial cσ(X), and let Mσ be in canonical form.
Let f be a bijection of the states of the equivalent XDFA ND onto polynomials
of degree n − 1, such that f maps the state s = 〈sn−1, sn−2, ..., s1, s0〉 into the
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polynomial f(s) = sn−1X
n−1 + sn−2X

n−2 + ... + s1X + s0. Then f maps the
state Mσ · s into the polynomial Xf(s) mod cσ(X).

For any c(X) over GF(2) with degree n, the polynomial algebra modulo c(X)
is a representation of GF(2n), the finite field of 2n elements. Lemma 1 provides
a mapping between these elements and the states of XDFA. Furthermore, the
XDFA state arrived at after a transition from state s on σ corresponds to the
polynomial which results from multipying f(s) by X within this representation of
GF(2n). The non-zero elements of GF(2n) form a cyclic multiplicative group [10].

Example 1. Let N be a binary XNFA (shown in Fig. 1), where Ma is the com-
panion matrix of ca(X) = X4 +X2 +X + 1 and Mb is the companion matrix of
cb(X) = X4 +X3 +X + 1. Ma and Mb are given in Fig. ?? and Fig. ??, respec-
tively. The resulting XDFA is shown in Fig. 2, while some examples comparing
state transitions and polynomial multiplication are shown in Table 1. Note that,
for now, the focus is on the cyclic behaviour of the equivalent XDFA, and so we
do not refer to any final states.

Ma =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0

 Mb =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1



q0start

q1

q2

q3

a,b a,b

a,ba,b

a,b
a

b

Fig. 1. Example 1: N

q0start

q1

q2

q3

q0, q1,
q2

q0, q2,
q3

q0, q1,
q3

q1, q2,
q3

a,b

a,b

a,b

a

b
a

b

a

b

a

b

a,b

Fig. 2. Example 1: ND
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Table 1. Transitions on δ correspond to multiplication by X

δ(σ, s) Xf(s) mod cσ(X)

δ({q0}, a) = {q1} X(1) = X

δ({q3}, a) = {q0, q1, q2} X(X3) = X4 mod ca(X)

= X3 +X2 + 1

δ({q0, q2, q3}, a) = {q0, q2, q3} X(X3 +X2 + 1) = X4 +X3 +X mod ca(X)

= X3 +X2 + 1

δ({q1}, b) = {q2} X(X) = X2

δ({q0, q1, q3}, b) = {q0, q2, q3} X(X3 +X + 1) = X4 +X3 +X mod cb(X)

= X3 +X2 +X

δ({q1, q2, q3}, b) = {q0, q1, q2} X(X3 +X2 +X) = X4 +X3 +X mod cb(X)

= X2 +X + 1

4 Non-unary SV-XNFA

The upper bound on state complexity is simply 2n − 1, since this is the number
of non-empty subsets for any set of n XNFA states. We now work towards
establishing a lower bound on state complexity. First, we restate the following
lemma from [1] for the unary case.

Lemma 2. Let c(X) = (X + 1)φ(X) be a polynomial of degree n with non-
singular companion matrix M , and let N be an XNFA with transition matrix M
and Q0 = {q0}. Then the equivalent XDFA ND has the following properties:

1. |QD| > n
2. |d| is odd for d ∈ QD
3. [q0], [q1], ..., [qn−1] ∈ QD
|d| is the number of XNFA states in the XDFA state d ⊆ Q, or the number of
one’s in the representation of d as 〈sn−1, sn−2, ..., s1, s0〉 where si = 1 if qi ∈ d
and 0 otherwise.

Theorem 1. Let Mσ1
, Mσ2

, ..., Mσr
be the companion matrices of r poly-

nomials cσ1
(X) = (X + 1)φσ1

(X), cσ2
(X) = (X + 1)φσ2

(X), ..., cσr
(X) =

(X+ 1)φσr
(X), respectively, and let Mσ1

, Mσ2
, ..., Mσr

be the transition matri-
ces of some n-ary XNFA N with Σ = {σ1, σ2, ..., σr} and Q0 = {q0}. Then the
number of states in the equivalent XDFA ND does not exceed 2n−1. Furthermore,
N has an SV-assignment.

Proof. See Appendix A. ut

The following lemma provides further information on the cycle structure induced
by polynomials with X + 1 as a factor.

Lemma 3. Let cσ(X) = (X + 1)φ(X). Then, in the companion matrix Mσ of
cσ(X), which is the transition matrix on some symbol σ for an XNFA, the state
mapped to φ(X) as described in Lemma 1, i.e. dφ, is the state contained in the
cycle of length one, when considering only transitions on σ.
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Proof. Consider the following:

(X + 1)φ(X) = cσ(X)

Xφ(X) + φ(X) = cσ(X)

Xφ(X) = φ(X) + cσ(X)

Therefore, Xφ(X) = φ(X) in the representation of GF (2n) as polynomials over
GF(2) modulo cσ(X). By Lemma 1, this corresponds to δ(dφ, σ) = dφ. ut

We now present a witness language for any n to show that 2n−1 is a lower bound
on the state complexity of SV-XNFA with non-unary alphabets.

Lemma 4. Let φ(X) = Xn−1 + φn−2X
n−2 + ... + φ1X + φ0 be any primitive

polynomial of degree n−1. Let N be a binary XNFA, and let the transition matrix
on a be the companion matrix of ca(X) = (X+1)φ(X) and the transition matrix
on b be the companion matrix of cb(X) = Xn+φ(X). Then the equivalent XDFA
of the XNFA with Q0 = {q0} contains exactly 2n−1 odd-sized states.

Proof. We write ca(X) and cb(X) in the following way:

ca(X) = Xn + cn−1X
n−1 + ...+ c1X + c0

cb(X) = Xn + φn−1X
n−1 + φn−2X

n−2 + ...+ φ1X + φ0

Since φ(X) is primitive, it has no roots in GF(2), including 1, so it must have
an odd number of non-zero terms. Therefore, by Lemma 1, |dφ| is odd. Fur-
thermore, cb(X) has an even number of non-zero terms, and so has 1 as a root.
Consequently, cb(X) has X + 1 as a factor.

The transition matrices Ma and Mb are given below. Let Q0 = {q0}. Then by
Theorem 6 of [1], the cycle structure on a is equivalent to an XDFA cycle with
2n−1 − 1 states, all of which, by Lemma 2, have odd size. Also, by Lemma 3,
dφ is not contained in this cycle. This means that on a, every odd-sized state
in the XDFA is reached except for dφ. Now, from Mb it follows directly that

Ma =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 . . . 1
c0 c1 . . . cn−2 cn−1

 Mb =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 . . . 1
φ0 φ1 . . . φn−2 φn−1



δ({qn−1}, b) = dφ. Furthermore, since X + 1 is a factor of cb, every transition
from an odd-sized state on b is to an odd-sized state. Consequently, the binary
XNFA N is equivalent to an XDFA that reaches all 2n−1 odd-sized states and
none other. ut



9

Theorem 2. For any n ≥ 2, there is a language Ln so that some n-state binary
SV-XNFA accepts Ln and the minimal SV-XDFA that accepts Ln has 2n−1

states.

Proof. Let ca(X) = (X+1)φ(X) and cb = Xn+φ(X), where φ(X) is a primitive
polynomial and let ca(X) and cb(X) have degree n. We construct an SV-XNFA
N with n states whose equivalent ND has 2n−1 states as in Lemma 4, and let
F a = {q0} and F r = Q \ F a.

Let L1
n = a(2

n−1−1)i+j for i ≥ 0 and j ∈ J , where J is some set of integers,
represents a subset of the language accepted by N that consists only of strings
containing a. Now, from the transition matrix of N it follows that 0, n ∈ J , while
1, 2, ..., n− 1 /∈ J , since q0 ∈ δ(q0, an) and q0 /∈ δ(q0, am) for m < n.

If there is an N ′D with fewer than 2n−1−1 states that accepts L1
n, then there

must be some dj 6= {q0} ∈ QD such that q0 ∈ dj , q0 ∈ δ(dj , an) and there is no
m < n so that q0 ∈ δ(dj , am).

Let dk be any state in ND such that dk 6= {q0}. Let max(dk) be the largest
subscript of any SV-XNFA state in dk. Then max(dk) > 0. Let m = n−max(dk),
so m < n. Then, from the transition matrix of N , it follows that q0 ∈ δ(dk, am).
That is, for any dk there is an m < n so that q0 ∈ δ(dk, am). Therefore, there is
no N ′D with fewer than 2n−1 − 1 states that accepts L1

n.
Now, let L2

n = bna∗, which is also a subset of the language accepted by
N . In order to accept this language, after reading bn, a state must have been
reached whereafter every transition on a must result in an accept state, i.e. an
XDFA state containing q0. But there is only one such state, and that is dφ, since
δ(dφ, a) = dφ, which is excluded from the cycle needed to accept L1

n. Therefore,
all 2n−1 odd-sized states are necessary to accept L1∪L2. Let Ln be the language
accepted by N , then since L1

n ∪ L2
n ⊂ Ln, at least 2n−1 states are necessary to

accept Ln. ut

Theorem 3. For any n ≥ 2, there is a language L′n so that some n-state n-
ary SV-XNFA accepts L′n and the minimal SV-XDFA that accepts L′n has 2n−1

states.

Proof. See Appendix A. ut

The following theorem shows that any given SV-XNFA can be used to obtain
another one via a so-called change of basis.

Theorem 4. Given any SV-XNFA N = (Q,Σ, δ,Q0, F
a, F r) with n states and

transition matrices Mσ1 , Mσ2 , ..., Mσr , and any non-singular n × n matrix
A, we encode Q0 as a vector v(Q0) of length n over GF(2) and F a and F r

as vectors v(F a) and v(F r) respectively. Then there is an SV-XNFA N ′ =
(Q,Σ, δ′, Q′0, F

′a, F ′r) where M ′σi
= A−1Mσi

A for 0 ≤ i ≤ r, v(Q′0) = v(Q0)A,
v(F ′a)T = A−1v(F a)T and v(F ′r)T = A−1v(F r)T , and N ′ accepts the same
language as N .

Proof. In the discussion in Section 2.1 we showed that for XNFA, the change of
basis described on an XNFA N that results in N ′, ∆′(w) = ∆(w). We extend
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this to SV-XNFA by defining two new functions. Recall that Mw represents
the sequence of matrix multiplications for some w of length k, and that M ′w =
A−1MwA. Then, let

accept(w) = v(Q0)Mwv(F a)T

reject(w) = v(Q0)Mwv(F r)T .

The SV-condition is that accept(w) 6= reject(w) for any w ∈ Σ∗. Similar to
∆(w), we have

accept′(w) = v(Q′0)M ′wv(F ′a)T

= v(Q0)A(A−1MwA)A−1v(F a)

= v(Q0)Mwv(F a)

= accept(w)

and

reject′(w) = v(Q′0)M ′wv(F ′r)T

= v(Q0)A(A−1MwA)A−1v(F r)

= v(Q0)Mwv(F r)

= reject(w)

Clearly, the SV-condition is met by accept′ and reject′, and so N ′ is an SV-
XNFA that accepts the same language as N . ut

The number of non-singular n × n matrices over GF(2) (including the identity

matrix) is |GL(n,Z2)| =
∏n−1
k=0(2n − 2k), and so for any SV-XNFA another

|GL(n,Z2)| − 1 equivalent SV-XNFA can be found.

Example 2. Let N be an SV-XNFA with alphabet Σ = {a, b, c}, and the follow-
ing transition matrices: Ma is the companion matrix of c(X) = X4+X3+X2+1,
Mb is the companion matrix of X4+X3+X+1, and Mc is the companion matrix
of c(X) = X4 + X2 + X + 1. Let Q0 = {q0}, F a = {q0, q2} and F r = {q1, q3}.
Fig. 3 shows N and the equivalent XDFA ND is given in Fig. 5, where a double
edge indicates an accept state and a thick edge indicates a reject state. Consider
the following matrix A:

A =


0 1 1 1
1 0 1 0
1 1 0 0
0 1 0 1

 .

We use A to make a change of basis from N to N ′. Let N ′ be an XNFA with
Σ = {a, b, c}, where M ′a = A−1MaA, M ′b = A−1MbA and M ′c = A−1McA.
Furthermore, let v(Q′0) = v(Q0)A, i.e. Q′0 = {q1, q2, q3}. Finally, let v(F ′a)T =
A−1v(F a)T and v(F ′r)T = A−1v(F r)T , i.e. F ′a = {q0, q2} and F ′r = {q2, q3}.
Fig. 4, shows N ′, with a double edge indicating an accept state, a thick edge
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indicating a reject state and a thick double edge indicating a state that is both
an accept state and a reject state. Fig. 6 gives the equivalent XDFA N ′D. It is
worth noting that, although N ′ has a different structure than N , N ′D has the
same structure as ND, and accepts the same language. Also, note that in N ′D, the
state {q0, q1, q2} is a reject state, because it contains an even number of accept
states, namely q0 and q2, but an odd number of reject states, namely q2. ut

q0start

q1

q2

q3

a,b,c a,b,c

a,b,ca,b

b,c

a,c

a,b

Fig. 3. Example 2: N

q0start

q1

q2

q3

a,b

b,c

b,c

c

a,b

a

b

a,b,c

c

a

a,b

c

a,b,c

a,b,c

Fig. 4. Example 2: N ′

5 Conclusion

We have given an upper bound of 2n−1 on the state complexity of SV-XNFA with
alphabets larger than one, and a lower bound of 2n−1. We have also shown that,
given any SV-XNFA with n states, it is possible to find another |GL(n,Z2)| − 1
equivalent SV-XNFA via a change of basis.
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A Appendix

Theorem 1. Let Mσ1
, Mσ2

, ..., Mσr
be the companion matrices of r polynomials

cσ1
(X) = (X+1)φσ1

(X), cσ2
(X) = (X+1)φσ2

(X), ..., cσr
(X) = (X+1)φσr

(X),
respectively, and let Mσ1

, Mσ2
, ..., Mσr

be the transition matrices of some n-
ary XNFA N with Σ = {σ1, σ2, ..., σr} and Q0 = {q0}. Then the number of
states in the equivalent XDFA ND does not exceed 2n−1. Furthermore, N has an
SV-assignment.

Proof. By Lemma 2, |d| is odd for d ∈ QD in the unary case. That is, for any
symbol with a transition matrix whose polynomial has X + 1 as a factor, a
transition from an odd-sized XDFA state is to another odd-sized XDFA state.
Since Q0 = {q0} and |{q0}| is odd, and cσ1(X), cσ2(X),...cσr (X), have X + 1
as a factor, only odd-sized states are reachable on any transition. The number
of XDFA states d such that |d| is odd is 2n/2 = 2n−1, and so ND can have at
most 2n−1 states. Since every XDFA state contains an odd number of XNFA
states, any choice of F a and F r such that F a ∪ F r = Q and F a ∩ F r = ∅ is an
SV-assignment. ut

Theorem 3. For any n ≥ 2, there is a language L′n so that some n-state n-
ary SV-XNFA accepts L′n and the minimal SV-XDFA that accepts L′n has 2n−1

states.

Proof. In the proof of Theorem 2, a language Ln for a binary SV-XNFA is
presented that reaches 2n−1 states. We convert the binary SV-XNFA N into an
n-ary SV-XNFA N ′ in the following way: for every σ ∈ Σ \ {a, b}, let Mσ be
the companion matrix of some cσ(X) = (X+1)φσ(X) with degree n. Then only
odd-sized states are reached on any input. Let L′n be the language accepted by
N ′. Ln requires 2n−1 states, and since Ln ⊂ L′n, so does L′n. ut


