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Termed ‘master gene regulators’ long ncRNAs (IncRNAs) have emerged as the true van-
guard of the ‘noncoding revolution’. Functioning at a molecular level, in most if not all cel-
lular processes, INcRNAs exert their effects systemically. Thus, it is not surprising that
IncRNAs have emerged as important players in human pathophysiology. As our body’s
first line of defense upon infection or injury, inflammation has been implicated in the
etiology of several human diseases. At the center of the acute inflammatory response, as
well as several pathologies, is the pleiotropic transcription factor NF-kf. In this review, we
attempt to capture a summary of IncRNAs directly involved in regulating innate immunity
at various arms of the NF-«x pathway that have also been validated in human disease.
We also highlight the fundamental concepts required as IncRNAs enter a new era of
diagnostic and therapeutic significance.

Master gene regulators: IncRNAs

The ‘noncoding revolution’ [1] has reformed our understanding of how the eukaryotic genomic code
is arranged, regulated and transcribed. Simply defined as the transcribed yet untranslated component
of the genomic code, noncoding RNAs (ncRNAs) have been classified by base pair length, genomic
origin and their functional mechanisms. Representing 70% of the noncoding genome, long ncRNAs
(IncRNAs) have played a vital role in substantiating this revolution [2-4]. Collectively classified as
ncRNA’s greater than 200 nucleotides in length, IncRNAs are defined by their genomic locale [3,5],
epigenetic characteristics [6,7], neighboring protein-coding genes [3,6], tissue specificity [8,9] and
their molecular mechanisms (Figure 1). Historically, mutations and alterations at the genomic loci of
protein-coding genes were thought to be casual to many human ailments. However, the potency in
which IncRNAs can modulate gene expression in a plethora of cellular processes sets a precedent for
IncRNAs to play a significant role in the etiology of human disease.

The inflammatory conductor: NF-«f

The inflammatory response is a highly co-ordinated symphony of transient and sustained tunes orche-
strated by a myriad of cells, cytokines, chemokines, regulatory factors and gene products. Given the
variety and quantity of components functioning in this complex biological phenomenon, it is not sur-
prising that inflammatory disharmonies underlie a variety of pathophysiological conditions.
Discovered over 30 years ago, the pleiotropic transcription factor, NF-xf, has served as a paradigm for
conducting immune homeostasis and maintaining harmonic balance during the inflammatory
response [10,11]. Thus, we sought to zoom in on the intersection of IncRNA and NF-k functionality
in the context of human pathophysiology.

There are essentially two main pathways leading to NF-«kf activation: the canonical and alternative
pathways [12]. The canonical pathway (Figure 2a), the focus of this review, involves the activation of
an Ik-Ba kinase (IKK) complex which contains NF-«f essential modulator (NEMO) and two kinase
subunits, IKKa and IKKB. NEMO tethers and regulates the ubiquitylation of the catalytic IKKo and
IKKp subunits. The inactive NF-xf/Ix-Bo. complex is maintained in the cytoplasm until IKKo and
IKKB mediate the phosphorylation of Ix-Bo at two serine residues, respectively, causing Ix-Bo. to lose
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Figure 1. Molecular mechanisms of IncRNAs.
(@) Enhancer-derived RNAs are short RNAs transcribed from regulatory enhancer regions. eRNAs bind to a mediator, a multiprotein complex, to

elicit chromatin looping and long-range chromatin contacts with a parental enhancer and target gene promoters, leading to the activation target

genes. (b) Scaffold IncRNAs function by binding to chromatin modifiers, transcriptional and/or repressive factors within a single complex, resulting

in DNA binding at target gene promoters. (c) Sponge IncRNAs function as molecular ‘sinks’ for miRNAs and/or mRNAs to regulate translation and/

or inhibit the formation of RNP complexes. (d) Decoy IncRNAs function as ‘sponges’ for transcription factors and chromatin modifiers, titrating

them away from target gene loci. (e) Guide RNAs act as molecular cues for transcription factors and chromatin modifiers at target gene loci.

its binding affinity to the NF-kp complex. The newly released and activated NF-xf complex is a heterodimeric
complex consisting of the subunits p65/RelA and p50. This active form of NF-xp, free from Ix-Ba, then translo-
cates into the nucleus where it binds to and transcriptionally activates the promoters of hundreds of genes includ-
ing several inflammatory cytokines such as TNF-a, IL-6, Cox2 and IL-1 [13,14]. This canonical NF-xf pathway
is highly autoregulatory, with NF-kf itself and/or its gene targets increasing the transcriptional activation of
Ix-Bo, which in turn recruits NF-«f back into the cytoplasm [15,16]. Dysregulation of any of the molecular com-
ponents of the NF-kp pathway has been consistently linked to several human disorders from cancer to auto-
immune diseases. During the ‘noncoding revolution’, several IncRNAs within the canonical NF-xf pathway were
identified. Recent findings in the field reveal several steps of this signal transduction pathway to be regulated by
these IncRNAs. In this review, we shed light on their regulatory roles in inflammatory-related diseases.

Inflammation and disease-specific IncRNAs

In 2012, Rinn and Chang [17] described a ‘guilt-by-association” functional IncRNA discovery pipeline that inte-
grated transcriptional and epigenetic sequencing data to formulate a hypothesis for the function of a given
IncRNA. The resultant hypothesis could then be experimentally validated. Today, this pipeline has been
expanded upon with the advent of chromatin conformation capture (3C) techniques to characterize trans-
acting IncRNAs and eRNAs. It is now routinely possible to obtain single-cell transcriptome [18,19] and 3C
information [20,21], providing unprecedented detail on the intricacies of IncRNA functionality and their rela-
tionship to 3D chromatin architecture, as well as unveiling the extent of cellular heterogeneity. Early studies
have alluded to IncRNAs playing a functional role in immunoregulation [7]. This has since been extensively
validated by the discovery of numerous IncRNAs in the contexts of infection, immunity and disease. One such
study used a microarray-based approach to identify IncRNA expression profiles in NF-xp-activated
MDA-MB-231 breast cancer cells. Of the 23 wup-regulated IncRNAs following lipopolysaccharide
(LPS)-mediated NF-xf activation, NF-xf-interacting IncRNA (NKILA) was up-regulated 12-fold [22].
Cytoplasmically located, NKILA binds to the repressive NF-kf/Ix-Bo. complex, masking the Ix-Bo phosphoryl-
ation sites required for the release, activation and translocation of NF-xf (Figure 2a(i)). The same study also
revealed NKILA expression to be inversely proportional to breast cancer metastasis and patient prognosis.
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Ultimately, NKILA functions as an NF-«f negative-feedback regulator, preventing cancer-associated inflamma-
tion and metastasis (Figure 2a(i)) [22].

Since its discovery almost a decade ago, HOX Antisense Intergenic RNA’s (HOTAIR’s) function has
extended from being a spatial marker of the anterior-posterior anatomical axis, to being a potent oncogenic
factor and prognostic biomarker. HOTAIR is a trans-acting transcriptional repressor that functions by ‘guiding’
and ‘scaffolding’ the Polycomb Repressive Complex 2 (PRC2) complex to its target loci [23]. Recent studies
have observed dysregulated HOTAIR expression in several cancers where it has been implicated in carcinogenic
processes such as proliferation, apoptosis and metastasis. HOTAIR expression modulates and is modulated by a
spectrum of immunoregulatory factors including TNF-o. [24]. Recently, Ozes et al. [25] demonstrated that
TNF-o stimulation in A2780p ovarian cancer cells resulted in a 16-fold increase in HOTAIR expression, which
was mediated by the binding of NF-kf at the HOTAIR promoter. In turn, this aberrant HOTAIR expression
induced a DNA damage response (DDR). Increased HOTAIR expression also correlates with the significant
reduction in Ix-Bo protein levels (Figure 2a(v)) in the same cells, which subsequently lead to increased NF-kf3
nuclear translocation and activation. Taken together, these findings implicate the HOTAIR-NF-xf-
DDR-positive feedback loop as a causative mechanism of the persistent DNA damage and reduced genomic
integrity observed in ovarian cancer [26,27]. Furthermore, this HOTAIR-NF-k-DDR loop and the resultant
up-regulation of NF-«kf target genes are thought to lead to the acquisition of chemotherapy resistance [28,29].
Preliminary evidence in septic cardiomyopathy also appears to corroborate the involvement of this loop in
deregulated immunity [30]. It is therefore tempting to speculate if, and how, the HOTAIR-NF-xB-DDR feed-
back loop lies at interface between innate immunity and autoimmunity.
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Figure 2. LncRNAs in the NF-«xf signalling pathway.
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Figure 2. LncRNAs in the NF-xp signalling pathway.
(a) Activating (solid boxes) and inhibitory (dashed boxes) IncRNas of the NF-kp canonical pathway. (i) NKILA scaffolding INcRNA prevents Ixp and
NF-xf dissociation, maintaining NF-«xf in an inhibited cytosol-retained state. (i) linc-p21 binds to and sequesters p65 mRNA, preventing its
translation. (i) PACER functions as a decoy binding and titrating p50 away from the NF-«xp-activated Cox2 locus, promoting Cox2 transcription.
(iv) ARID-IR may promote IL-18-mediated NF-«B phosphorylation. (v) HOTAIR acts as a scaffold for transcriptional repressor PRC2 at the lx-Bo
promoter, preventing lk-Bo. expression. (vi) IL-1B-eRNA and (vii) IL-13-RBT40 activate IL-1p expression by mediating chromatin looping, resulting in
contacts between the IL-1B promoter and its upstream enhancer, subsequently resulting in IL-1p transcription. (viii) ANRIL functions as a molecular
scaffold for transcription factor YY1 at the NF-xf locus, activating NF-kp transcription. (ix) THRIL functions as a scaffold for NF-xf3 and hnRNPL at
the TNFa locus, allowing for its transcriptional activation. (x) MALAT1 functions as a decoy, binding the NF-kp sequestering it away from its target
promoters. (xi) Lnc-DILC binds to the IL-6 promoter possibly along with a currently unknown transcriptional repressor to prevent IL-6 expression.
(b) IncRNAs associated with inflammatory human diseases. NKILA: breast cancer; THRIL: Kawasaki disease and cardiovascular disorders; ANRIL:
cardiovascular disease; Inc-DILC: hepatoma carcinoma; HOTAIR: cardiomyopathy and several cancers including ovarian cancer; MALAT1: several
cancers, including lung, pancreatic, brain, liver and breast cancer; Arid2-IR: ureteral obstructive nephropathy; lincRNA-p21: rheumatoid arthritis;
PACER: several cancers including osteosarcoma.

As previously described [13,14] the active NF-xf heterodimer complex consists of p65/RelA and p50 subu-
nits. The nuclear translocation of these heterodimers results in the transcriptional activation of NF-« target
genes. The p50 subunit, however, can also form p50/p50 homodimers. Termed ‘inactive’, the p50/p50 homodi-
mer functions as a TNF-o transcriptional repressor in tumor-associated macrophages [31]. The same is true
for Cox2 expression in LPS-stimulated macrophages, where p50/p50 occupancy at the Cox2 promoter prevents
p50/p65-mediated transcriptional activation (Figure 2a(ii)) [32]. This effect is offset by the Cox2 antisense
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‘decoy’ p50-associated Cox2 extragenic RNA (PACER). PACER directly binds to p50 sequestering p50/p50
homodimers away from the Cox2 promoter promoting p50/p65 occupancy which increases the expression of
Cox2 (Figure 2a(iii)) [32]. Although functionally relevant in the acute inflammatory response, persistent Cox2
expression also promotes oncogenesis and cancer progression in various cancers. Incessant Cox2 expression in
human osteosarcoma 143B and MG63 cells is potentiated by increased PACER expression and activity in an
NF-kB-dependent manner [33]. The attenuated cellular proliferation and invasion observed during PACER
knockdown positions PACER as a potential target for therapeutic intervention in human osteosarcomas.

TNF-a and heterogenous nuclear ribonucleoprotein L (hnRNPL)-related immunoregulatory long intergenic
ncRNA (lincRNA; THRIL) expression has been associated with Kawasaki disease (KD). Characterized by sys-
temic vascular inflammation and elevated circulatory TNF-o during its acute phase, this pediatric disease can
lead to extensive cardiovascular damage [34]. Attenuated THRIL expression in acute KD patients and
Pam3CSK4-stimulated THPI-derived macrophages suggests that THRIL may be regulated by or regulate
TNF-o expression. THRIL was found to directly bind hnRNPL, the complex required to maintain basal TNF-a
levels. This binding event is crucial for hnRNPL occupancy at the TNF-o. promoter [35]. These findings
suggest that THRIL functions as a ‘guide’ or ‘scaffold’ IncRNA at the TNF-o promoter. Intriguingly, increased
TNF-o expression was reflected by a decrease in THRIL expression in THP-1 cells following stimulation [35].
Decreased THRIL expression, in turn, led to decreased TNF-o expression. Indeed, this was validated by
RNAi-mediated THRIL knockdown assays, which led to a strong reduction in the expression of TNF-a and
that of other NF-xP regulated cytokines including IL-6 and IL-8 [35]. These findings unravel a novel
IncRNA-mediated negative-feedback loop that tightly regulates basal and stimulated TNF-o expression levels
(Figure 2a(xi)). In effect, THRIL appears to prevent disproportionate inflammatory responses, such as those
observed in KD and inflammatory bowel disorders.

The antisense ncRNA in the INK4 locus (ANRIL) was originally identified as a PRC2 ‘scaffold’ IncRNA
responsible for the epigenetic silencing of genes at the INK4 locus genes [36]. Transcribed from the high-risk
susceptibility locus Chr9qp21, dysfunctional ANRIL expression and its multiple small nucleotide polymorph-
isms (SNPs) have been implicated in a several diseases including atherosclerosis, periodontitis, coronary artery
disease, diabetes and numerous cancers. RNA immunoprecipitation assays reported the transcription factor
Ying Yang 1 (YY1) as an ANRIL-binding factor, indicating a role for ANRIL in the inflammatory response
[37]. Both short and long isoforms of ANRIL (SANRIL and LANRIL) are significantly up-regulated by
pro-inflammatory activators LPS, TNF-q, interleukin 1 beta (IL-1B) and interferon gamma (IFN-y) [38]. Each
of these factors, bar IFN-y, augments NF-kf binding at the ANRIL promoter. Subsequently, ANRIL propor-
tionally up-regulates several inflammatory genes, including IL-6, CXCR4 and IL-8. Each of these gene promo-
ters are enriched with both YY1 and ANRIL in human umbilical cord vein endothelial cells and
patient-derived peripheral blood mononuclear cells (Figure 2a(vii)) [38]. These results describe a novel activat-
ing and ‘scaffolding’ role for ANRIL in the inflammatory response. Extensive studies of the NF-xf/ANRIL/YY1
pathway are yet to be pursued in the context of other diseases where ANRIL expression is deregulated.

IncRNA down-regulated in liver cancer (Inc-DILC) was recently characterized in 3D hepatoma carcinoma
(HCC)-derived spheroids formed in culture under chemotherapeutic selection [39]. Consistently down-regulated
in 3D spheroids as compared to traditional 2D monolayers, Inc-DILC depletion was specifically detected in cells
expressing known cancer stem cell (CSC) markers [39]. CSCs are a distinct subset of tumor-associated cells that
have been linked to chemotherapy resistance [40]. TNF-o or IL-1f stimulation of HCC-derived spheroids
increased Inc-DILC occupancy ~203 bp upstream of the IL-6 promoter (Figure 2a(xi)) [39]. This IncRNA-
DNA-binding event prevented NF-«kB-mediated transcription and secretion of this potent JAK2/STAT3 signal-
ing activator [39]. IL-6 has been previously shown to exhibit enhanced activity in CSCs [41]. RNAi-mediated
Inc-DILC depletion not only augmented IL-6/STAT3 signaling, but also enhanced CSC-associated marker
expression and tumor expansion in the HCC-derived spheroids [39]. These findings place Inc-DILC as a poten-
tially critical determinant in both the hepatic inflammatory microenvironment and CSC expansion through its
mediation of cross-talk between the TNF-a/NF-xf and IL-6/STAT3 signaling cascades. Although Inc-DILC
appears to function as a ‘signal’ IncRNA, the molecular ‘receivers’ and ‘executors’ of this ‘signal” at the IL-6 pro-
moter remain enigmatic (Figure 2a(xi)). More extensive validation experiments are required to further elucidate
this mechanism and validate Inc-DILC’s broader relevance to the TNF-o/NF-xf signaling pathway.

As its name suggests, the nuclear-retained metastasis-associated lung adenocarcinoma transcript 1
(MALAT1I) plays a predominant role in tumor development and progression. Initially identified by its overex-
pression in lung and pancreatic cancers in 2003 [42], a molecular mechanism for MALATI, in normal

© 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society 5



. PORTLAND Biochemical Society Transactions (2017)
..‘ PRESS DOI: 10.1042/BST20160377

physiology, was elucidated three short years later [43]. The Miiller-Tidow laboratory described MALAT1s as a
molecular ‘sponge’ sequestering serine/arginine-rich splicing factors to nuclear speckles, which subsequently
decreases alternative splicing [43]. However, previous findings have revealed MALAT1 to function as a ‘scaffold’
IncRNA that interacts with PRC2 to regulate the expression of growth control genes in cis [44,45]. The mode
of action in which MALAT1 functions is still under debate with several different cellular and animal models
describing conflicting functions. However, its role in cancer is unanimous. Augmented MALAT1 expression
has been demonstrated in several metastatic cancer and solid tumor cells, including lung [46], brain [47], liver
[46] and mammary tumors [48], establishing MALAT1 as a definitive marker of metastasis [49,50]. More
recently, MALAT1’s significance in innate immunity was elucidated. Functioning as a IncRNA ‘decoy’,
MALAT1 directly interacts with NF-xf subunits p65 and p50 in the nuclei of LPS-stimulated THP1 macro-
phages (Figure 2a(x)) [51]. This binding event correlates with attenuated NF-xf occupancy at its target promo-
ters [51]. RNAi-mediated knockdown of MALAT1 led to increased TNF-o and IL-6 expression; however, the
same was not observed for IL-1B [51]. Although NF-kP occupancy at the IL-1B promoter was not required for
increased IL-1B expression in Zhao et al’s (2016) study; NF-kf occupancy at the IL-1B-eRNA and
IL-1B-RBT40 IncRNA promoters is crucial for LPS-mediated IL-1B up-regulation of the same cell line in a dif-
ferent study (Figure 2a(vi,vii)) [52]. These seemingly conflicting findings underscore just how obscure IncRNA
functions are and even more so inter-IncRNA effects at the single-cell level.

Rheumatoid arthritis (RA) is an autoimmune disease characterized by an amplified immune response,
including enhanced TNF-o production, which ultimately results in chronic synovial inflammation [53].
Methotrexate (MTX) is an anti-rheumatic known to activate certain components of the DNA damage response,
including the tumor suppressor p53 [54]. lincRNA p21 (lincRNA-p21) is a p53-inducible IncRNA located
15 kb upstream of Cdknla/p21 [55]. ‘Guiding’ hnRNP-K to p53-responsive genes both in cis [55] and in trans
[56] as well as directly affecting post-transcriptional gene regulation and protein stability, lincRNA-p21 has
emerged as a critical effector of p53-regulated processes such as apoptosis [55,57,58]. Recently, lincRNA-p21
was shown to be consistently down-regulated in RA patients [54]. MTX treatment in primary T cells and cell
lines induced linc-p21 expression in a DNA-dependent protein kinase catalytic subunit (DNA
PKcs)-dependent manner [54]. Furthermore, lincRNA-p21 induction in MTX-treated RA patients diminished
NF-«P functionality [54]. The mechanism of action employed by lincRNA-p21, in this context, does not alter
NF-xf subunit transcript levels; instead, lincRNA-p21 binds and sequesters the p65/RelA mRNA transcript
presumably inhibiting its translation (Figure 2a(ii)). Accordingly, significant reductions in phosphorylated p65
protein levels were also observed in patients treated with MTX [54]. These findings suggest that chronic NF-«f
activation in RA patients is corrected by MTX therapy in a lincRNA-p21-dependent manner, thus implicating
lincRNA-p21 as a novel therapeutic target for inflammation-associated disorders.

At the time of writing this review, the latest IncRNA discovered in the NF-«f} signaling pathway was AT-rich
interactive domain-containing protein 2 (Arid2)-IR. Arid2-IR is transcribed from the second intron of the
chromatin modifier complex SWItch/Sucrose Non Fermentable (SWI/SNF) chromatin modeling subunit,
Arid2. Upon transforming growth factor beta 1 (T'GF-B1) stimulation, in the kidneys of unilateral ureteral
obstructive (UUO) nephropathic mice, mothers against decapentaplegic homolog 3 (Smad3) binding at the
Arid2-IR promoter initiates Arid2-IR transcription [59]. Surprisingly, Arid2-IR knockdown did not influence
TGEF-B1 signaling in the same model. However, Arid2-IR knockdown inhibited IL-1B-induced NF-x phos-
phorylation and activation (Figure 2a(vi)). Arid2-IR overexpression in the same animal model resulted in per-
sistent NF-«f activation and sustained NF-xf binding at the promoters of pro-inflammatory cytokines: TNF-o.
and monocyte chemotactic protein 1 (MCPI1) in response to IL-1B stimulation. Furthermore, reduced renal
inflammation was observed, marked by reduced F4/80+ macrophage and CD3+ T-cell occupancies in the tubu-
lointersitium of UUO kidneys, following Arid2-IR RNAi-mediated knockdown [59]. These findings led the
authors to postulate a model where Arid2-IR/NF-x signaling promoted renal inflammation. Although not far-
fetched, further investigation of this proposed mechanism, particularly in different experimental models, is
required.

Over and beyond the IncRNAs discussed here, numerous disease-specific IncRNAs have been linked to
NF-xp signaling. However, their functional mechanisms in this context remain elusive. Some notable cancer-
specific examples include DLEU1 and DLEU2 [60], Morrbid [61], LINK-A [62] and CCAT?2 [63]. On the other
hand, IncRNAs, such as NeST [64], lincRNA-Cox2 [65], Lethe [66], Umlilo [67], IL-1B-eRNA and
IL-1B-RBT46 [52], have been functionally validated at various arms of the NF-xf pathway yet their immunore-
gulatory roles in human disease remain hypothetical.

6 © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society
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Perspectives

Considering that IncRNAs contribute to a significant proportion of the human genome, it is not surprising that
the largest proportion of SNPs resides at noncoding loci [68]. Although IncRNA SNP catalogs exist in curated
databases such as LncVar [69], LincSNP [70] and IncRNASNP [71], extensive validation studies on their func-
tional significance are needed to not only expand upon our understanding of human disease but also to
develop more effective therapies against human disease. To date, only two functional IncRNA SNPs in the
NF-kP pathway have been validated: the first found in the ANRIL gene and the other within a novel HOTAIR
enhancer [72,73]. Each of these SNPs have been associated with increased disease risk and severity in certain
populations. Though largely underrated, functional IncRNA genetic variation may play a larger role in the eti-
ology of human disease than that of their protein-coding counterparts.

As demonstrated in this review, among others, IncRNA functioning at a molecular level has systemic conse-
quences. Thus, the dysregulation of IncRNA expression and functionality contributes to several pathophysio-
logical states with several IncRNAs validated as bona fide prognostic and diagnostic markers. This, of course,
introduces the need to address IncRNA ‘druggability’ in the development of novel therapeutic approaches. As
with determining the precise molecular mechanisms of IncRNAs, developing therapeutic interventions targeted
at IncRNAs requires careful consideration of IncRNA expression levels, subcellular localization, cellular specifi-
city, functional binding partners, SNPs, secondary and tertiary structure. Although their capabilities are cur-
rently limited, technologies used to suppress mRNAs such as antisense oligonucleotides [74], RNAi
[33,39,59,74], genome editing [67,75] and small-molecule inhibitors [76] are attractive strategies in this regard.
In the coming years, we envision IncRNAs functioning not only as diagnostic markers for disease, but also as
therapeutically relevant targets and agents.
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