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Abstract—In this paper we propose a new method for extract-
ing features from time series satellite data to detect land cover
change. We propose to make use of the behavior of a determin-
istic nonlinear system driven by a time dependent force. The
driving force comprises a set of concatenated model parameters
regressed from fitting a model to a MODerate-resolution Imaging
Spectroradiometer time series. The goal is to create behavior in
the nonlinear deterministic system which appears predictable for
time series undergoing no change, while erratic for time series
undergoing land cover change. The differential equation used for
the deterministic nonlinear system is that of a large amplitude
pendulum, where the displacement angle is observed over time.
If there has been no change in land cover the mean driving force
will approximate zero, hence the pendulum will behave as if in
free motion under the influence of gravity only. If however there
has been a change in land cover this will for a brief initial
period introduce a non-zero mean driving force, which does
work on the pendulum, changing its energy and future evolution
which we demonstrate is observable. This we show is sufficient to
introduce an observable change to the state of the pendulum, thus
enabling change detection. We extend this method to a higher
dimensional differential equation to improve the false alarm rate
in our experiments. Numerical results show change detection
accuracy of nearly 96% when detecting new human settlements,
with a corresponding false alarm rate of 0.2% (omission error
rate of 4%). This compares very favourably with other published
methods, which achieved less than 90% detection but with false
alarm rates all above 9% (omission error rate of 66%).

Index Terms—Nonlinear detection, Remote sensing, Time se-
ries

I. INTRODUCTION

It is estimated that more than a third of the Earth’s land
surface has been transformed by anthropogenic activities
[1]. These changes affect the environment driven by socio-
economical factors. These changes include deforestation, agri-
cultural expansion and urbanization which have significant
impact on hydrology, ecosystems and climate [2], [3]. The
increase in human population is a major driver of settlement
expansion, which applies further pressure on the remaining
natural resources [4]. The growing human population makes
the detection of newly formed human settlements the focus of
this study.
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Figure 1. Land cover change detected in the town of Modimolle
(24°41708.47"'S, 28°24’45.75""E) located in the Limpopo province, South
Africa. The Quickbird image at the top was taken on 24 April 2006 and the
bottom on 3 November 2012 (Courtesy of Google™ Earth). A change in
land cover type is shown in the pink box, while adjacent areas only undergo
a seasonal change which is shown in the green box.

Historically, change detection relied largely on image inter-
pretation by analysts. Owing to the vast amounts of satellite
imagery that are available, machine learning methods are now
widely regarded as the most viable option for classification and
change detection [5], [6]. The use of machine learning methods
enables change detection, which encompasses the quantifica-
tion of temporal phenomena from multi-date imagery most
commonly acquired by satellite-based multi-spectral sensors
[7]. Detecting land cover change using machine learning
methods can reduce human interaction and enable large data
sets to be potentially processed in a fraction of the time.

Many change detection methods have been developed to
operate on the differences between two images [5], [8]. The
limitation of only using two images is that similar land cover
types can appear significantly different at various times of
the year, as shown in Figure 1 [7]. A set of remote sensing



images acquired at high temporal frequency should provide the
ability to distinguish between change events and phenological
cycles [9]. Capitalizing on the high temporal sampling rate
which captures the dynamics of different land cover types
provides information on the seasonal dynamics in the form of
a time series [10]. Incorporating this temporal information into
a change detection algorithm allows the method to distinguish
between land cover conversion and natural seasonal variations.

Over the last decade numerous time series change detection
methods have been developed to operate on various satellite
images. These methods are limited by the number of images
available in the study area and the type of change investigated.
Medium resolution satellite imagery is becoming more com-
mon in time series analysis, such as the Landsat time series
stack which consist of a single image every year [11]. The
Vegetation Change Tracker (VCT) algorithm was applied to
this stack to detect changes in forests for every year from
1984 untill 2006. This was adequate as undisturbed forests
typically maintain stable spectral reflectances over many years,
while non-forest land cover types have both seasonal and
inter-annual variability [11]. Similarly a linear spectral mixture
analysis was used on 8 Landsat images to improve the net loss
in sub-Saharan African forests between 1995 and 2011 [12]. In
recent work an iteratively re-weighted multivariate alteration
detection (IRMAD) was used to detect land cover change in
monthly composited Landsat images between 2008 and 2011
[13]. The areas identified as no-change was then supplied to
a random forest classifier for classification.

If longer time series are required or larger study areas are
surveyed then there is a need for high temporal and wide swath
acquisitions of coarse resolution satellite imagery, such as
MODerate-resolution Imaging Spectroradiometer (MODIS).
An example of surveying a large study area was the inves-
tigation of dimensionality reduction in multi-temporal remote
sensing images using principal component analysis for land
cover classification on MODIS for over 204 training sites
[14]. This data set consist of 28 images with an expectation
maximization algorithm used to compute missing data. In
Bangladesh thousands of hectare of Aus rice was monitored
using MODIS [15]. The high temporal revisit time of MODIS
allowed temporal and spatial growth profiles for eight sites
to be created between May and July 2010. In [16], the
conversion of forest to grassland and cropland to grassland
was investigated using MODTrendr. MODTrendr is a temporal
segmentation algorithm which uses trajectory segmentation to
determine change in slopes within time series.

The objective of our research is to detect new human
settlements which are unplanned and unregulated, which are
quite common in the developing world. This means we do
not know where and when these settlements will be erected,
so that use of high resolution imagery to detect change is
computationally prohibitive and impractical. Thus the goal
is to detect potential new human settlements using coarse
resolution imagery at moderate computational cost, which will
then allow us to task high resolution satellites for confirmation
and detailed mapping of change events so detected. We need
wide swath images to scan large areas for possible changes
as well as high temporal revisit times as these settlements can

quickly be constructed, often in a matter of weeks.

New settlements were reliably detected in our study area
using a neural network trained on short-term Fourier transform
extracts [17]. This was shown to be a robust approach to
extracting meaningful features which most temporal sliding
window methods do not comply with [18]. A windowless
approach using an extended Kalman filter to extract features
from a time series was shown to produce similar results [19].
However all the methods operate on the basis of extracting
descriptive features from a time series and present it to a
machine learning method. A major challenge for most change
detection algorithms is to attain high change detection accu-
racy (true positives) while maintaining a low false alarm rate
(false positives). This process usually entails the extraction of
features which generally improves the ability to learn patterns
associated with change.

These methods all rely on significant changes in the spectral
reflectance over a short time interval which the machine
learning method can identify. The construction time however
of these new settlements can vary significantly, which reduces
the detection accuracy. Lowering the thresholds to compensate
for this reduction unfortunately increases the false alarm rate.

In this paper we propose a new paradigm for detecting
change, yet maintaining a low probability of false alarm.
The proposed method creates new features by applying the
extracted features (regressed model parameters) as a driving
force to a deterministic nonlinear system. We will demonstrate
that the output or state of the deterministic nonlinear system
is predictable for geographical areas that are experiencing no
land cover change, and unpredictable (erratic) when there is
land cover change. Thus the observed state of the nonlinear
system presents a straightforward method for change detection.
This we will show is the case regardless of the rate of change
[20] as a time series undergoing land cover change is time-
dependent and has non-stationary properties [21].

The paper is organized as follows. Section II discusses the
study area and data set. In section III we present the new
proposed method, and in section IV our experimental results
are presented. Section V presents the conclusions.

II. STUDY AREA AND LAND COVER DATA

The Limpopo province is located in the northern part of
South Africa and is largely covered by natural vegetation
that is used by the local population as grazing for cattle
and wildlife. The development of settlements in the area
is currently one of the most pervasive forms of land cover
change and to a large extent informal and unplanned. Mean
annual maximum temperature is 29°C, mean annual minimum
temperature is 15°C and mean annual precipitation during the
last 30 years is below 600 mm with 84% occurring between
October and March. The province experienced a drought
during 2002 [22].

For our experiments pixels located in the Limpopo province
were extracted from the corresponding MODIS tile H20V11,
and over 100 areas were chosen at random based on previous
ground reference data maps. Four expert analysts were as-
signed to different areas with 10% overlap. This overlapping of



regions was used as a control set to moderate between analysts.
The analysts had assess to various high resolution satellite
imagery for validation which is summarized as follows:

o SPOT?2 imagery at 20 m spatial resolution for year 2000—
2001,

o SPOTS5 imagery at 5m spatial resolution for year 2006—
2008,

o Quickbird imagery (courtesy of Google™ Earth) at
0.65m panchromatic, 2.62m multi-spectral (at nadir)
spatial resolution for the period 2001-2013.

Each analyst had to map out various polygons of change
and no-change using all the imagery available. The number
of images available varied significantly between geographical
areas but there were always at least two images available;
SPOT?2 and SPOTS5 images. Due to this variation, determining
the exact date of change was impossible. Software was then
used to determine the percentage overlap between mapped
polygons and MODIS pixels. An investigation from past work
concluded that methods proposed for change detection could
detect change if more than 70% of MODIS pixels were
changed, which we used as a benchmark to test our new
proposed method [19]. The polygons varied significantly in
size from single MODIS pixels to several dozens of pixels.
In our analysis we applied cross validation to avoid common
pitfalls in evaluating methods [23]. This allowed different
polygons to be included in the validation phase of inspecting
various methods. The study area, which was validated by
visual inspection, had geographical areas experiencing no
change of natural vegetation and human settlement covering
an area of 558 km? (2232 MODIS pixels). The study area also
contained geographical areas where land cover changed and
this class covered 29.25km? (117 MODIS pixels).

The time series of the MODIS pixels identified in this
work were extracted from the 500 m MCD43A4 land surface
reflectance product. It was used because it offers nadir and
bidirectional reflectance distribution function (BRDF) adjusted
spectral reflectance bands [24]. For each pixel a time series
was extracted from all seven spectral bands of the 8-day
composite MODIS MCD43A4 data set (year 2000-2012). The
quality flags in the MODIS data were used to identify cases
where quality was low due to persistent cloud cover (or other
atmospheric factors) over the 8 day period of data collection
[24]; these samples were replaced by interpolating through
temporal neighbors using a cubic spline.

III. PROPOSED CHANGE DETECTION METHOD
A. Feature extraction

The ability to differentiate between seasonal variations and
land cover change makes time series analysis very appealing
[7]1. We start our discussion with a traditional approach to
detect land cover change in a time series. A [N-sample time
series of reflectance values for a given pixel is

Ty ={znphnz) = {T10%25 .. TN}, (D

where the time index is denoted by n € [1,N] and the
spectral band by b € [1,...,7]. Machine learning methods can
detect change in a time series by considering either the entire

time series or a set of sub-sequences extracted with a sliding
window [18]. The ability of the machine learning method to
detect change is improved when more descriptive features are
extracted.

A common feature extraction approach is to fit a parametric
model to a time series with a suitable regression algorithm.
The regressed model parameters are then used as input to
the machine learning method. The model can be fitted on
the extracted sub-sequences with either a least squares [25]
or a Fourier transform [18]. A windowless approach is also
possible based on an extended Kalman filter using internal co-
variance matrices [19]. The extended Kalman filter described
in [25] was used to fit a triply modulated cosine model [26].
There is no restriction on the model used, except that it should
be appropriate for the study area and model parameters must
be regressed with a suitable algorithm.

For our study area the triply modulated cosine model is used
and is defined as

Tnb = MUn,b + Qn b COS(LL)TI + ¢n,b) + Un,b- (2)

The variable x,,; denotes the n-th observed value of the b-
th spectral band’s time series. Additive noise is denoted by
vnp ~ N(0,02). The angular frequency w is assumed to be
the same over all seven spectral bands and is computed with
w = 2nf, where f is based on the annual vegetation growth
cycle. Given the eight daily composite MCD43A4 MODIS
product, f was calculated to be %. The cosine function was
separately fitted on each spectral band at each time index to
compute the following set of model parameters: the non-zero
mean /iy p, the amplitude o, and the phase ¢, ;. Previous
studies have found that the most relevant features for change
detection in this study area are the non-zero mean [, ; and
amplitude «,; [19]. These derived model parameters form a
new pair of time series as

b= {2 = {pptop - pins}, 3)
{an o)=Y ={a1paop ... anp}- )

QI =

b =

These time series are concatenated into matrices for multi-
band analysis as

M1 H21 HN,1
Hi2 H2,2 HKN,2
- Vb=7 ) ) )
M= {jp}p=1=| . . G
Hi7 H2,7 UN,7
Q11 Q21 QN1
o b=T Q12 Q22 . QN2
A= {ab}bzl = . . . . . (6)
Q17 Qo7 QaN,7

Equations (3)—(6) are used as input to a machine learning
method to detect land cover change which is expressed as



[17]
F(fp) for mean parameter analysis
5 — F (@) for amplitude parameter analysis
‘) F (/Ib p) for single band analysis ’
F(M,A) all spectral bands analysis

@)
where 6. denotes the change metric produced by the machine
learning function F. This metric is used to compute the
true positive rate as P(c|d., c) and false positive rate with
P(c|é., ). The variable ¢ denotes change and ¢ denotes no
change. This concludes the introduction to the conventional
approach of detecting land cover change in a time series.

B. Using a nonlinear deterministic system to extract new
features

In this section new input features are presented to be used
by the machine learning function F. These inputs are derived
from the output state of a nonlinear system driven by a force
P. Key requirements of this system are that it does not respond
when there is no change in land cover, regardless of the values
of iy and @, but it will respond (ideally strongly) when there
is a change.

This first requirement is most simply achieved if we subtract
the expected value, evaluated as a moving window average of
recent past values, i.e. P = pinp — Elgnp] or P = app —
Elan p], leaving essentially a stochastic process with a zero
mean when there is no change in land cover. This will be
described more formally below. However if there is a change
in land cover there will be a lag between i, and E[uy, p]
(or ayp and Elay, p)]), so for a brief period there will be a
net action (or time integral) of the force acting on the system,
producing a response which is readily detected (derivation in
Appendix).

Regarding the second requirement, we propose a nonlinear
system to provide improved detection compared with tradi-
tional approaches. We propose a large amplitude pendulum
as such a system, and will demonstrate that this provides
higher true positive rates while significantly lowering the false
positive rate. We propose to utilize the model parameters
regressed from a time series and apply it as a driving force Py
to a differential equation describing the pendulum as shown
in Figure 2 at time index k. This driving force will move
the pendulum’s bob away from its original periodic motion of
swinging back and forth into a new state of oscillation.

A large amplitude pendulum is shown in Figure 2, which
consists of a bob of mass m suspended from a massless rod of
length L to a fixed frictionless pivot. The pendulum is released
from an initial displacement angle 6y and swing back and
forth with a periodic motion. The motion is dictated by all
the tangential forces exerted on the bob which are the driving
force and the tangential component of the gravitational force.
By applying Newton’s second law for a rotational system, the
motion of the pendulum in discrete closed-form is

A2,
Ak2

with Cy = ﬂ and Cy =

+ Cysin by, = Co Py, (8)

—At

. The variable g denotes the

Frictionless pivot

Driving force
P(t)

Motion of pendulum

Force of gravity
g =9.8ms>

Figure 2. A large amplitude pendulum with no friction or air resistance.

gravitational acceleration. The variable 6;, denotes the angular
offset at time k relative to the static equilibrium position,
i.e. relative to the bob hanging straight down, and At is
the time between successive samples (in this case 8 days).
Counter-clockwise positions from the static equilibrium point
are considered to have positive angles and clockwise positions
with negative angles.

A small angle approximation of sinf, = 6} is used to
compute the harmonic motion when the bob is released from
a small initial displacement angle (|6p| < 30°). This reduces
Equation (8) to a linear deterministic system. The period of
a single swing depends only on the length of the rod and the
strength of the gravitational field g. The initial displacement
angle 0y and the mass of the bob have no effect.

The small angle assumption however is not valid if the
initial displacement angle 6y is large (|6p] > 30°), which
means the sin @, term remains in its nonlinear form shown
in Equation (8) and the motion should be tracked using a
numerical method to approximate the solutions of the ordinary
differential equation. The pendulum becomes “more” nonlin-
ear for larger 6y. Although the pendulum motion is described
by a nonlinear response it is still completely predictable.

Let us formally define the driving force to illustrate the
relation to the model parameters given in (3) and (4). The
driving force P}' for the time series [y, is

Plf:{kbkl_{PlubP;b Ilé,b}v 9)

where in our experiments K > N is arbitrarily large since
the regressed model parameters are finite and the the motion
of the pendulum can be observed as far into the future as is
desired. Individual terms in the time series are

pro_ { tnp — Elpinp] forn=%kand k <N
kb — 0 .

otherwise
where E|u, ] is the expected value defined above. Similarly
the driVing force Py* for the time series & is

Py _{Pkb}k 1 —{Pffbpz(fb~~~P1%,b}7

(10)

Y



with
a CVn,b - E[an,b]
P kb — { 0
Without loss of generality all following discussion about the
driving force P, will hold for both P}' and P?*. The angular
offset f, is dependent on the applied driving force. A vector

containing the complete periodic motion of the pendulum for
a particular driving force is

forn=Fkand k <N

otherwise (2

{0k ({ P HE) =S

{01,({Pip}iZ]) - - Ok p({Pip}i=f)}. (13)

Based on the conditional equations shown in Equations (10)
and (12), there are two phases to the pendulum motion which
will be presented in detail in this section.

Phase I (applied driving force), initiation of the pendulum
over time period k£ = [1,2, ..., N], indicating that N samples
from the time series are available. Over this period only
minimal change in € is desired, and is achieved by making
the pendulum period greater than N (controlled by adjusting
the value of C). If there has been no change in land cover the
mean driving force will approximate zero, hence the pendulum
will behave as if in free motion under the influence of gravity
only. This is a state we are able to recognise as the no change
state as its known a priori.

On the other hand, if there has been a change in land cover
this will for a brief period introduce a non-zero mean driving
force, which does work on the pendulum, changing its energy
and future evolution. This is sufficient to introduce a very
apparent and observable change to the state of the pendulum
at the end of Phase I, which, as demonstrated in the Appendix
can significantly change its natural period of oscillation. The
degree to which this occurs depends on the degree of non-
linearity, which can be controlled by the initial conditions to
Phase I. For example, at an amplitude of 0,,,,, = 178° a 0.01%
change in the pendulum’s energy produces approximately a
4% change in the pendulum’s period. This is in stark contrast
to the well known fact cited above that for small to moderate
amplitude (Omax < 30°) the period is essentially independent
of amplitude. Thus the driving force magnitude (governed by
C5) need only be small to produce the necessary change in
energy, in fact it needs to be small to ensure that the pendulum
state does not change when there is no change in land cover.

During Phase II (driving force removed), referred to as
separation of states, the pendulum is unforced and allowed
to swing freely (P}, = 0 for k > N), with initial conditions
being the state of the pendulum at the end of Phase I. We have
shown that for a highly nonlinear pendulum (an amplitude of
motion 60, — m) if there has been a change in land cover
the change of state by the end of Phase I will significantly
change the pendulum’s free oscillation period. Of course there
is some separation in Phase I, but since this occurs over a finite
and relatively small time this separation is not yet detectable
at the start of Phase II. However over a small number of
oscillations the states due to no-change or change will quickly
separate, and the separation will be straightforward to observe,
presenting us with a change detection strategy.
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(a) Pendulum’s angle of displacement over time given driving forces derived
from all the MODIS time series undergoing no land cover change.
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Angle of displacement

Sample time of pendulum x 10"

(b) Pendulum’s angle of displacement over time given driving forces derived
from all the MODIS time series undergoing land cover change.

Figure 3. The observed angle of displacement given the driving force of
model parameter oy o on the pendulum. The extraction of ay o from no
change MODIS time series shown in (a) and change MODIS time series in

®).

For example (see Figure 8), at an observation time of 2.25
periods the pendulum position will be 0° with no driving force.
If the initial amplitude is set to f,,x = 178° and a driving
force exists that is scaled to increase the system energy by
only 0.01% then the new angular displacement at the same
observation time will be 142°. This is explained further in
the Appendix and shown in Figure 8, and is because of the
sensitivity of the period to the driving force and steepness
of the 6 versus time relationship around # = 0. It also has
the desirable feature of being relatively insensitive to larger
changes in the driving force since above 150° the motion curve
is quite flat and can tolerate significant phase shifts before
returning below this value (e.g. dimensionless times in the
range 40—47 in Figure 8 — thus it matters that change has
occurred, but not by how much).

Once a few oscillations have occurred and the states have
separated, we can evaluate the angular displacement to detect



land cover change when present. Equation (7) shows how
a machine learning method is used to detect change using
model parameters. We change the input features to the periodic
motion path as

F (9_;,( qb)) for single parameter analysis
6.(P)=1q F(O (B, g‘(]sb)) for single band analysis
F(BH, 0%) all spectral bands analysis

(14)
where J.(P) denote the change metric produced by the
machine learning function F. The spectral bands are paired
for multi-band analysis as ©* = {f'(B,)}=7 and O~ =
{gg(ﬁb)}gj The conjecture is a disturbance to the periodic
motion of the pendulum would be a more descriptive feature
to the machine learning method than the original regressed
model parameters.

Lemma 1. The characteristics of a differential equation can
be investigated with the aid of a phase plane plot, which
illustrates the limit cycles of the solutions. A three-dimensional
phase plane representation that is autonomous can be de-
rived for Equation (8) as shown in [27]. The Poincaré-
Bendixson theorem states that a differential equation with a
three-dimensional phase plane can be chaotic [28]. Hence
Equation (8) is a nonlinear deterministic system that can exert
an erratic response.

According to Lemma 1, an erratic response is possible
given a suitable time dependent driving force. However given
the 8-day acquisition rate of MODIS the change in the time
series might only be observed for a few time samples. Here
observing the pendulum over infinite time (K > N) is highly
advantageous as the pendulum is sensitive to changes in the
initial conditions, where a small change in Phase I can result in
large differences in Phase II. This means the differences in the
solutions for change and no change time series should become
more clear as k — oo. This effect can be even further enhanced
by increasing the non-linearity with 8y — 180° (6p — 7).

Thus the problem of detecting change in the pendulum’s
motion path can be formulated as a binary hypothesis test for
k> N as:

Ho :5b(13b)|fb(a)
Ha :06(FPo)|z,(c)

no change in time series &

change in time series T (15)

Testing hypothesis #; is problematic as 671,(]31,)| #,(c) could be
unpredictable in practice. Hence only hypothesis H is deemed
testable as it is predictable and if rejected then we can assume
‘H1. Thus hypothesis H is formulated as

—

p (BB Ho) = [8(Py) — 0,0)|| = | o) -

<7
(16)
where 9_;*; denotes the expected motion path of the pendulum if
the initial angle 8y and initial angular velocity %(to) is known
and no driving force is exerted (P, = 0, Vk). The variable «y
is used to set the true positives and false positive rates.
This binary hypothesis test suggest that a single parameter
— given a single pendulum’s motion path — can be solved
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(a) Distribution of displacement angles at the point of index shown in
Figure 3.
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(b) An enlarged view of the distribution with the lower and upper threshold
inserted.

Figure 4. An illustration of the displacement angle given the exertion of
amplitude model parameter of the second spectral band on the pendulum at
time index 5670 (point of interest in Figure 3). The expected displacement
angle at this time index is 2.507 radians and is denoted with a black dirac
delta function. The distribution of the no change MODIS time series is shown
in green around the expected displacement angle and change MODIS time
series in red. The naive Bayes threshold for the lower threshold is computed
as 2.42 radians and upper threshold as 2.58 radians. The threshold produce
a change detection accuracy of 95.6% with corresponding false alarm rate of
0.9%.

optimally with a naive Bayes classifier as a change detection
algorithm. A single band analysis (mean and amplitude pa-
rameter combined) in Equation (14) using both the mean and
amplitude model parameters can be viewed as a 3-dimensional
space with 2 degrees of freedom which we solved using a
Support Vector Machine (SVM). The same holds for the all
seven spectral band analysis using both parameters which is
15-dimensional with 14 degrees of freedom for parameter sets
{©r, 0%},

In our experiments we assumed that each driving force
is orthogonal to all other driving forces, which implies all
driving forces are mutually independent. This reduces the
complexity of simultaneously evaluating a M -dimensional



Figure 5.

Google Earthj
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Land cover change detected in the town of Dairing (23°49/22.73"'S, 29°21/27.55"'E) located in the Limpopo province, South Africa. The

Quickbird image on the left was taken on 23 April 2001 and on the right on 14 April 2013 (Courtesy of Google™ Earth). This detection was made on a
small existing settlement growing borders and internal increase in dwellings. All these pixels were successfully detected by our method.

differential equation to M pendulums swinging independently.
An advantage of using the independence property is that each
pendulum is independent in time to each other. This allows us
to investigate each pendulum’s displacement angle at different
time indices. This is a powerful property but for the sake of
simplicity will not be explored in our analysis as we will
restrict ourselves to a single time index for all our experiments.

IV. EXPERIMENTAL SETUP AND RESULTS
A. Setting of parameters and illustrative example

We will start this section by first discussing how to set up
the pendulum, followed by a illustrative example and conclude
with experimental results.

A requirement was to make the pendulum appear pre-
dictable, which implies fixed initial conditions. The pendulum
was set with the following conditions: (1) an initial displace-
ment of 6y = 178° (3.10 radians), (2) initial angular velocity of
%l =0,(3) C, = 3.42x1076 (C, = %, using description
in Appendix, we arbitrarily set ¢ = 9.8m/s?, At = %,
L=20and m=1)and (4) Cy =3.49 x 1077 (Co = — 2L,
for more description on how to set these parameters please
refer to the following paragraphs and the Appendix). The
length of the driving force was set to N = 550 as we had
12 years of MODIS data available in our experiments and the
number of observations of the pendulum was arbitrarily set
high to K = 20000.

C1 determines the linear (or minimum) period of oscillation
of the pendulum (T;, = 27/4/C1), which we suggest should
be large compared with the duration of Phase I. This is so that
work done by the driving force is either only positive or only
negative. When a land use change occurs the expected value
of the driving variable will lag the changing actual value, so
the driving force will have a constant sign. Work done on the
pendulum is the product of this with displacement, so if Ty,
is too short and the pendulum begins to return during Phase I
(as would be the case if C is too large) there will be both
positive and negative work done on the pendulum, producing
cancellation of energy input, hence its change in energy would
not be as great as it could be, and could even at times be nearly

zero. This would compromise the nonlinear system’s ability to
detect the change.

Setting C5 does also change the behavior quite significantly
as it can either amplify or negate the effects of the driving
force. A pendulum can complete multiple 360° cycles if too
much driving force is applied (large C5). This is undesirable
as the number of completed cycles must be recorded for each
individual driving force in the analysis and the properties of
the differential equation are negated. The effect of the driving
force could also be severely attenuated if C5 is small, which
will hinder the possibility of measuring any characteristics of
the driving force and make Equation (8) appear more linear
deterministic. Cy should be selected to ensure a constrained
motion in the pendulum such that 0, € (—m,7),Vk and that
a desirable response can be observed.

For an illustrative example, shown in Figure 3, let us use
the regressed amplitude parameter of the second spectral band
to drive a pendulum which is

o ={a12 ao2... ass02}, o))
with corresponding driving force
Py = {{one — Blonal 5 {02290}, ()

Using this driving force we can approximate the solution
of Equation (8) using a fourth-order Runge-Kutta method to
derive a time series of displacement angles as
O2(P5) = {0k o ({P =D 1R (19)
The conjecture was that the displacement angle 52(]%")
would provide a more descriptive feature for a machine
learning algorithm. In Figure 3 we explore this by evaluating
the displacement angle as a function of pendulum obser-
vations k. The displacement angles for all the time series
corresponding to pixels undergoing no land cover change is
shown in Figure 3(a) and time series undergoing land cover
change in Figure 3(b). It is clear from this illustration that
the pendulum undergoing land cover change exhibits a much
more pronounced erratic behavior. This shows how only a few



Figure 6. Land cover change detected in the suburb of Polokwane Extension 28 (23°54/31.41"'S, 29°30/24.80"'E) located in the Limpopo province, South
Africa. The Quickbird image on the left was taken on 3 June 2001 and on the right on 25 September 2011 (Courtesy of Google™ Earth). Only the top right
MODIS pixel was flagged as changed. The three remaining pixels had to little change in the geographic footprint to be detected.

samples undergoing non-stationary change has a notable net
force exertion on the pendulum.

An arbitrary point of k¥ = 5670 was selected as an illus-
trative example—denoted as ‘point of interest’ in Figure 3.
At this selected point the expected angle ¢ , is denoted with
a black Dirac delta function in Figure 4. A distribution for
time series undergoing no land cover change is shown in
green. It is clear that this distribution is located in close
proximity to the expected angle. Similarly a distribution for
time series undergoing land cover change is shown in red. This
distribution however is scattered and can easily be detected by
placing an upper and lower threshold around the no change
distribution. A Bayesian approach was used to set the two
thresholds given a fixed permitted number of false positives.
Estimating the thresholds can be done with any machine
learning method and is denoted as

5u(By) = F (0u(F5) ).
In this example a true positive rate of 95.6% was found with
corresponding false positive rate of 0.98%.

Investigating M-pendulum simultaneously will require the
aid of a support vector machine. Producing meaningful results
will require proper presentation of the displacement angles to
the SVM [18]. As land cover change is assumed to appear
erratic, it would be infeasible to train a classifier to classify
this behavior. Instead the support vector machine was used to
determine the threshold plane for the responses generated by
no land cover change time series and treated the land cover
change responses as anomalies. In our work we set up a SVM
with a Gaussian radial basis function kernel and used tenfold
cross validation to set the influence of the support vectors used

and penalty term to trade off the incorrect classifications when
deriving the decision surface.

(20)

B. Experimental results

The mean and amplitude parameter of all the seven spectral
bands were used in separate experiments as driving force. The
difference in pendulum oscillation stabilized as £ — K and

k > N, which means the separation of states in Phase II has
taken full effect and no more difference could be found. True
positive rates (change detection accuracy) and false positive
rates (false alarms) at this point are reported in Table 1.

Spectral bands 2, 5, 6 and 7 offered the most promising
results on our labeled data set. The amplitude parameter of the
second spectral band had the highest detection accuracy at a
fixed false positive rate. The mean parameter py, ; of spectral
band 1 barely offered true positive rates above 70% with a
corresponding false positive rate of 10%. Spectral bands 3 and
4 offered unacceptable low true positive rates. The commission
and omission error rate on these four spectral bands support
this claim.

However, even though the other spectral bands offer poor
performance they can still offer valuable information when
a supervised classifier like a SVM classifies in a multi-
dimensional space. It either has the ability to assist in improv-
ing the true positive rate [17] or it can lower the false positive
rate [25]. Our experiments found that the false positive rate
was further reduced as shown in Table II when a SVM was
used on the 14-dimensional pendulum.

An overall true positive rate of 96% was observed with a
ten-fold cross validation and a corresponding false positive rate
of less than 0.2% for the 14-dimensional pendulum. This was
a significant improvement when compared to previous work
done on this study area (Table II).

Previous approaches include critical analysis done in [7],
which analyses deviations in the differencing in annual NDVI
differences within time series. This approach had a change
detection accuracy of 69% and false alarm rate of 13%. This
was followed by classifying Fourier transformed extracted sub-
sequences with a multilayer perceptron using the first two and
all seven spectral bands of MODIS [17]. This method reported
a change detection accuracy of 79% and false alarm rate of
17% using the first two spectral bands and 87% change detec-
tion accuracy and 9% false alarm rate using all seven spectral
bands. All these methods are pixel-based change detection
methods and have achieved acceptable performance on this
study area. These experiments suggest that the performance



Table T
THE AVERAGE CHANGE DETECTION ACCURACY (TRUE POSITIVES RATES) ALONG WITH THEIR CORRESPONDING FALSE POSITIVES RATES MEASURED ON
THE LABELED DATA SET FOR ALL SEVEN SPECTRAL BANDS IS GIVEN ON THE TWO MODEL PARAMETERS. THE OVERALL ACCURACY, COMMISSION
ERROR AND OMISSION ERROR RATE IS ALSO PROVIDED.

Spectral ~ Parameter  True positives  False positives  Overall Accuracy Commission error ~ Omission error
band (%) (%) (%) (%) (%)
Band 1 i1 56.9 0.98 96.9 43.1 24.7
o1 25.9 0.98 95.4 74.1 41.9
Band 2 ke,2 92.2 0.98 98.6 7.8 16.8
o2 95.6 0.98 98.8 4.4 16.3
Band 3 1,3 0.8 0.98 94.1 99.2 95.9
o3 0.0 0.98 94.0 100.0 100.0
Band 4 ke, 4 14.6 0.98 94.8 854 56.2
4 2.6 0.98 94.2 97.4 87.8
Band 5 .5 81.0 0.98 98.1 19.0 18.75
k5 76.7 0.98 97.9 23.3 19.6
Band 6 1,6 87.1 0.98 98.4 12.9 17.6
k.6 78.4 0.98 97.9 21.6 19.2
Band 7 ke, 7 88.7 0.98 98.5 11.3 17.4
Q7 93.9 0.98 98.7 6.1 16.6
Table 1T
A COMPARISON BETWEEN DIFFERENT CHANGE DETECTION ALGORITHMS ON THE LABELED DATA SET.
Algorithm True positives  False positives Overall Commission ~ Omission
(%) (%) Accuracy (%) error (%) error (%)
Annual NDVI differencing method [7] 69 13 86 31 78
Multilayer perceptron 2-bands method [17] 79 17 83 21 80
Multilayer perceptron 7-bands method [17] 87 9 91 13 66
EKF spatial window method [19] 89 13 87 11 74
Best 1-dimensional pendulum 96 1 99 4 16
14-dimensional pendulum 96 0.2 99 4 4

of the methods were hindered as the spectral differences were
small in the bands undergoing land cover change. A spatial
approach yielded higher change detection accuracy in the
study area, such as the EKF spatial window method [19]. This
method computed the differences between neighboring pixels
to detect change. This improved the change detection accuracy
to 89% with false alarm rate of 13%. However, none of these
methods could compete with a single pendulum let alone a 14-
dimensional pendulum. The best performing pendulum used
the amplitude parameter of the second spectral band as driving
force which obtained a true positive rate of 96% with a false
positive rate of 1%.

The increase in change detection accuracy compared to
other methods was investigated. One of the improvements that
was found is shown in figure 5. In the town of Dairing there
was a growth in the borders as is seen in the illustration,
but also a growth in the internal number of dwellings. All
nine pixels in this illustration was detected with the proposed
approach which we defined as success. We also investigated
other areas which we knew had small changes compared
to a relative size of a MODIS pixel as shown in figure 6.
These high resolution imagery show significant change in the
upper right MODIS pixel and several minor changes in the
remaining three pixels. Only the upper right pixel was declared
as changed by our method, which made us aware of the
remaining three pixels upon inspection of the high resolution
image. This showcases how coarse resolution satellite imagery
can be used to task high resolution satellites to find new

settlement expansions.

V. CONCLUSIONS

In this paper we present a new descriptive feature to assist
machine learning method to detect change in a time series.
The descriptive feature is derived by exerting a regressed
model parameter as a driving force to a deterministic nonlinear
system. The large amplitude pendulum was biased to exhibit
a nonlinear deterministic response for time series undergoing
no land cover change and appeared erratic for time series
undergoing change.

It was shown that a land cover change prediction signifi-
cantly improved with reported change detection accuracy of
96% when using all seven spectral bands of MODIS with
false alarms as low as 0.2% and omission error of 4%. This
compares with a result of less than 90% detection but with
false alarm rates all above 9% and omission errors above 66%
for other published methods.

A diverse set of differential equations exist in the litera-
ture each having their own unique solutions and properties.
The findings in this work suggest that the detection of new
settlement can be improved by observing the behavior of a
large amplitude pendulum modulated with regressed model
parameters. Although finding and mapping this type of land
cover change is hard, the large amplitude pendulum could be
further refined by examining the performance on an experi-
mental design with a larger set of data.
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Figure 7. Showing how the pendulum’s energy affects its period by increasing
its amplitude.

We postulate various different Earth observed processes and
changes may be better expressed or viewed by modulating the
correct differential equation.

APPENDIX

The governing equation in continuous time for the motion of
the large amplitude pendulum of Figure 2 is

d?0
dt?
with C4 4 and Co For an unforced motion

L
P(t) = 0 Vt starting from rest (%2 = 0) with initial angular
displacement 6, the problem reduces to solving

+ Cysinf = CoP(t) 21)

d*0
with C3 = L. To analytically derive the unforced natural
period of the large amplitude pendulum we reduce (22) to

a first order equation by multiplying it with

10

0
dt?

df
dt

do

i (23)

() () =~ () e

Then integrate (23) with respect to time with initials conditions
of (22) to yield

2
% (2?) =cosf — cos Oy, 24
hence " 5
= \/C (cosf — cosfg) . (25)
3

where the negative square root must be taken over the first
half period to satisfy the initial conditions. The period of
oscillation 7' is computed if Equation (25) is solved by
separation of variables and integrating over a quarter of the
period, which brings the pendulum to the vertical position at
which @ = 0, thus

_,/%/Od‘)_
2 Jg, Vcost — cosb N

If sing =sin % sin ¢, then a change of variable will replace
the integration limits § = 0 and 6y with ¢ = 0 and arcsinl =
5 respectively, which gives

T

T (26)

1\/1 — sinz%sinqudG

0
5 sin 50 cos ¢ do

)
<1 — 2sin? 50 sin? ¢>)
o
1 — 2sin?
( bll’l 2 >

27

cos B — cos By

0
= 2sin? 50 cos® . (28)
which simplifies after some reduction to
T = 4\/C’>3 / =4, / sm —
0 /1 —51n2 90 sin?
(29)

where K is the complete elliptic integral of the first kind [29].
Note that K(0) = 5 and K’(0) = 0, hence we recover the
classic small amplitude pendulum period solution 7" = 271'\/%
independent of amplitude.

As confirmed by (25), the total energy of the pendulum
system in the absence of a driving force is constant and equal
to the potential energy at the maximum amplitude, namely
E = mgL(1 — cosf) if the potential energy is referenced to
the static equilibrium position § = 0. As shown in Figure 7(a),
if the pendulum’s amplitude is close to 180° then a small input
of additional energy may change the amplitude significantly.
Figure 7(b) shows that at these angles the period is also very
sensitive to the amplitude, so this input of energy will in turn
significantly change the pendulum’s period.

If we now change the one initial condition of d9° 2(0) =
—wp, how will it alter the pendulum angle 0(¢) at arbltrary
time? We assume wy is positive, so the pendulum has already
begun to fall towards its equilibrium position. We also assume
the pendulum oscillates, rather than rotates, i.e. that the total
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Figure 8. Showing the effect of a 0.01% increase in energy from an initial
displacement of 178.0000° (solid line) to 178.3608° (broken line). Time is
normalised such that the linear (small amplitude) period is 27r. At an amplitude

of 178° the actual period is 3.460 times the linear period (¢, / % = 21.74).

energy is less than 2mgL, hence based on energy conservation
we can define an amplitude 6., satisfying

1
€OS Opax = cos by — §ng§ . (30)
We note therefore that the period is now
L Omax
T=4,=K (sin2 ) . (31)
g 2

Let t,.of denote the reference time which is the last time before

= 0 at which 6 = 0,,,x. In order to retain the negative sign
on the right of (25) we define a reduced time 7 as the shortest
time after ¢,¢ at which 6(7) = 6(¢). Given that the pendulum
motion is periodic, this is

o
(32)

which is always in the range 0 < 7 < % In the manner of
deriving Equation (26) we integrate (25) with modified limits
and divide the integral into two parts to obtain

VLt

o V/€OS 0 — €08 Oy
6(t)

do }

0 cos 0 — oS O nax
c0s 0 — cos Onax

ey a
2 Omax
90 }

mod(t — trer, T')
T — mod(t — tref, T')

mod(t — tyef, T') < %
otherwise

_|_

(33)

- tref

do

_|_
cos 0 — coS O ax

(34)
0

The appropriate change of variable is now
0

sin — = sin
2

and the first integral is just %, so following the same approach

emax

sin ¢, (35)

11

as above,

do
\/1 — sin® 0% sin’ ¢

T Pr
z*v@/
0

T L Omax
= ——/—F[le:r 36
1 ; (sa \ =5 > (36)
where sinp, = % and F(o\a) = F(p|m) is the

(incomplete) elliptic integral of the first kind, defined by
Abramowitz and Stegun [29, S17.2] with m = sin? a. Note
that K(m) = F(5|m) = F(5\«). Similarly

L gmax r
tret = [ = F 4 Y
£ P (@tref\ 2 ) 4 ( )
where Ptrer — %&i%

In principle therefore, we can evaluate the angle at any given
time by solving (36) given 7 from (32), (37) and (30).

For example, in the case of ‘no change’, after 2% periods
7 = 0.2507 exactly and 6 = 0, but, as illustrated in Figure 8
(mentioned also above) where we started at an angle of 178°
and increased the energy by 0.01%, the amplitude is increased
to 178.3608°, the period is increased by approximately 3.66%
from 21.7396 to 22.5349 (the dashed line in the Figure 8), so
we will have 7 = (%22 —2)T = 0.17067 and = 142°. This

1.0366
is a dramatic change from 6 = 0 for only a 0.01% increase in
energy.
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