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ABSTRACT

Machine learning models trained using images can be used to gen-
erate image overlays by investigating which image areas contribute
the most towards model outputs. A common approach used to
accomplish this relies on blanking image regions using a sliding
window and evaluating the change in model output. Unfortunately,
this can be computationally expensive, as it requires numerous
model evaluations. This paper shows that a Gaussian process ap-
proximation to this blanking approach produces outputs of similar
quality, despite requiring signiicantly fewer model evaluations.
This process is illustrated using a user-driven saliency generation
problem. Here, pairwise image interest comparisons are used to in-
fer underlying image interest and a Gaussian process model trained
to predict the interest value of an image using image features ex-
tracted by a convolutional neural network. Interest overlays are
generated by evaluating model change at blanking image regions
selected using the prediction uncertainty of a Gaussian process
regressor.

CCS CONCEPTS

· Mathematics of computing → Probabilistic algorithms; ·
Theory of computation → Gaussian processes; · Comput-

ing methodologies→ Video summarization; Visual content-
based indexing and retrieval;

KEYWORDS

Gaussian processes, Saliency generation

ACM Reference format:

Michael Burke. 2017. Leveraging Gaussian process approximations for rapid
image overlay production. In Proceedings of SAWACMMM’17, Mountain View,

CA, USA, October 23, 2017, 6 pages.
https://doi.org/10.1145/3132711.3132715

∗Visiting lecturer in Computer Science and Applied Mathematics, University of the
Witwatersrand, Johannesburg, South Africa

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.
SAWACMMM’17, October 23, 2017, Mountain View, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5505-6/17/10. . . $15.00
https://doi.org/10.1145/3132711.3132715

Figure 1: A saliency overlay can be produced by sliding a

blanking region (grey) over an image and determining the

change in interest prediction output. Smoothing this heat-

map produces a saliency overlay highlighting content of in-

terest to an end-user.

1 INTRODUCTION AND RELATED WORK

This work introduces an image interest overlay approximation that
can be used to highlight image content of potential interest to an
end-user. Saliency or attention overlays of this type can be par-
ticularly useful aids for humans tasked with investigating large
numbers of images. For example, a medical imaging overlay high-
lighting image content of potential concern could signiicantly
speed up medical imaging analysis. As a result, the ability to detect
and generate saliency images automatically is highly desirable.

Saliency detection algorithms aim to ind pronounced features
or areas in images and are often used to determine which image
areas humans are drawn to. Saliency overlays can also be used
to highlight image content of interest to an end-user. The well
known Itti-Koch saliency map [10] relies on lagging multiple low
level features to build a bottom-up model of image attention. This
saliency map has been extended using facial and scene features to
highlight images of potential interest to humans in photo albums
[21]. Salient image regions have also been extracted using a spectral
residual approach [9]. This approach difers from the Itti-Koch
saliency map as it is independent of image features, categories and
other prior information. Unfortunately, saliency measures such as
these often lack contextual information about the type of image
content of interest for a speciic domain or task.

As a result, feature-based saliency models do not always agree
with human deinitions of saliency. An attempt to remedy this trains
an attention model using a number of hand selected image features
by recording human gaze [11]. A support vector machine is then
able to classify the potential interest value of an image area using
this model. Unfortunately, these approaches aim to build general
saliency maps, but for many tasks saliency is domain or problem
speciic. Contextual information has also been used to combine
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low-level features and high-level detections like faces together with
visual organisation information to detect salient image areas [7].
Hipster wars [12] trains an image-based style classiier in a fashion
application from style judgements, using a part-based model to
generate saliency maps that associate clothing items with styles.

Machine learning models are frequently used to make predic-
tions using images. However, these models are often extremely
complicated, particularly when deep convolutional neural networks
are deployed, and it can be hard to investigate the behaviour of
these models. In an attempt to address this, a wide range of model
visualisation tools have been developed. Among others, these in-
clude t-SNE embeddings [14] that transform image features to make
them linearly separable, thereby grouping similar images; retriev-
ing images that maximally activate neural network neurons [6];
investigating neural network ilters or visualising the activations
and irst layer weights [13]. These visualisation tools can often be
used to generate model-speciic saliency maps.

For example, sensitivity analysis visualisation strategies have
been proposed for classiication models [3]. These approaches at-
tempt to determine howmuch a pixel needs to be changed tomodify
a predicted classiication label. An alternative visualisation strategy
relies on layer-wise relevance propagation [2]. Here, a relevance
score is assigned to each layer of a machine learning model and
these relevance scores are propagated through the model to vi-
sualise the contributions of single pixels to a model prediction.
This approach has been shown to outperform sensitivity analysis
visualisation approaches [19] when generating image overlays.

A particularly intuitive model visualisation approach relies on
occluding image regions and measuring the change in model output
[22]. A large change in model output typically indicates that an
image region is important and that the model has been trained to
detect regions like this. This behaviour is not only useful for model
interpretation, but can be leveraged to generate image overlays
for end-users. This approach is similar to sensitivity modelling
methods, but a primary beneit is that it allows for black-boxmodels,
and does not require knowledge of model structure or access to
model layers.

An example of this blanking process being used to generate im-
age overlays can be found in the story-boarding application of [5].
Here, a model is trained to predict the interest value of an image to
an end-user for an autonomous mobile robot. This model is then
used to build a storyboard summary of a video sequence captured
by a mobile robot, and overlays are generated to provide users with
a saliency map highlighting image regions likely to be of interest.
Unfortunately, this occlusion process can be extremely computa-
tionally expensive as it requires numerous model evaluations to
complete.

This paper shows that a Gaussian process approximation ap-
proach can be used to generate image overlays highlighting image
content of interest to an end-user with fewer image blanking eval-
uations, thereby reducing the processing time required to produce
an overlay. The paper is organised as follows. Section 2 briely
describes the interest predictor used to generate overlays in this
work, Section 2.1 shows how overlays can be produced using an
occlusion approach [22], and Section 2.2 describes the Gaussian
process approximation strategy. Finally, results and conclusions are
provided in Sections 3 and Sections 4 respectively.

2 GENERATING INTEREST OVERLAYS

For this work, we use a pairwise comparison approach to infer
image interest. Here, a user is presented with image pairs, and
asked to indicate which image is of greater interest. A Bayesian
interest inference algorithm [8] is then applied after a number of
image comparisons have been made. Here, images are assumed to
have underlying skills or interests, and a probabilistic graphical
model of the chance of an image being preferred over another
constructed [4]. This model is then used to infer underlying image
interests using expectation propagation [17].

Once image interests have been established, a predictive model of
interest can be trained. Here, we use a Gaussian process regression
model operating on image features extracted using a pre-trained
convolution neural network [5].

2.1 Image interest overlays

This section shows how an interest overlay can be created using
a predictive model of image interest and a visualisation strategy
proposed for convolutional neural networks [22]. Here, the change
in algorithm output is observed as a sliding window blanking out
image parts is moved over an image. A negative change in out-
put indicates that the blanked image area contained elements of
importance.

Given an image interest predictor

y = f (X), (1)

where X denotes an input image, we can generate an overlay by
determining the change in image interest predictions as regions in
the image are replaced with blanked areas. Let

ŷ (u,v ) = f (X̂) (2)

denote the predictor value at image position (u,v ), determined
using a new image X̂, formed by replacing the image pixels in a
rectangular window around position (u,v ) in image X with the
mean pixel values of all images in the dataset for which overlays
are being generated.

An image overlay, I, can be generated by determining the re-
sultant change in image interest and taking the exponent of the
diference to highlight any diferences,

I = exp(y − ŷ). (3)

Finally, a Gaussian blur operator is used to smooth the image over-
lay. Figure 1 illustrates this process.

2.2 Gaussian process overlay approximations

The blanking approach discussed in Section 2.1 is particularly ef-
fective at identifying which image content contributed to image
interest and generates a useful overlay as a result. However, produc-
ing this overlay can be extremely expensive as it typically requires
that a feed-forward convolutional neural network evaluation be
made for each pixel in the input image. Even if images are down-
sampled, the large number of evaluations required to generate the
overlay is still prohibitively expensive.

This section describes a Gaussian process (GP) approximation
strategy that can be used to generate an image overlay using far
fewer blanking evaluations. Gaussian processes are collections of
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Figure 2: A Gaussian process regressor is trained to predict image overlay values as a function of image position. The uncer-

tainty in this regression output is evaluated at all image regions and used to propose a new sampling location (red dot (a)). The

image is occluded at this location (b), and the change in model output determined by evaluating the predictive model using

this blanked image. This value and the corresponding sampling position is added to the Gaussian process training data and

the process repeated until convergence (c).

random variables, any inite number of which have joint Gaussian
distributions [18].

We can approximate the interest overlay using a Gaussian pro-
cess I (x), with the mean function,

m(x) = E[I (x)] (4)

and covariance function,

K (x, x′) = E[(I (x) −m(x)) (I (x′) −m(x′))]. (5)

Here, x corresponds to the rows and columns of pixels in the
image. We use a Matérn 5/3 kernel, commonly used for images or
grids,

K (r ) = σ

(

1 +
√
5r +

5

3
r2

)

exp(−
√
5r ), (6)

where

r =

√

(u − u ′)2
lu

+

(v −v ′)2
lv

, (7)

σ is the kernel variance, (u,u ′) and (v,v ′) are the rows and columns
of image pixels, and (lu , lv ) are length scales. Assuming the mean
function is zero, we can form a joint normal distribution of training,
I, and test, I∗, outputs,

[

I

I
∗

]

∼ N
(

0,

[

K (x, x) K (x, x∗)
K (x∗, x) K (x∗, x∗)

])

. (8)

Conditioning the joint Gaussian on the training points, I, pro-
duces a predictive overlay distribution,

I
∗ |x∗, x, I ∼ N (K (x∗, x)K (x, x)−1I,

K (x∗, x∗) − K (x∗, x)K (x, x)−1K (x, x∗)).
(9)

This distribution can be used to estimate interest overlays using a
limited number of blanking observations, I. Model itting is accom-
plished by initialising the kernel with sensible variance and length

scale estimates (1, 15) and then optimising these using a maximum
likelihood approach [15].

The probabilistic nature of this overlay prediction is particularly
useful, as it allows the construction of an eicient sampling strategy
for the selection of blanking observations. We use an incremental
sampling strategy, where new samples are chosen by selecting
image coordinates with the largest uncertainty in predictive overlay
value,

xs = argmax
x∗

[

K (x∗, x∗) − K (x∗, x)K (x, x)−1K (x, x∗)
]

. (10)

Figure 2 illustrates this sampling strategy more clearly. This selec-
tion process can be slow, but could be bootstrapped using Latin
hypercube sampling [16].

3 RESULTS

Empirical Gaussian process overlay approximation convergence
was tested on a dataset of 3000 outdoor street scenes captured by an
autonomous rover. 15 000 pairwise image comparisons were used
to infer image interest using a Bayesian image interest estimation
algorithm [5]. Here, TrueSkill [8] is irst used to infer image inter-
ests from pairwise image comparisons. These interests are then
improved using a Gaussian process model that introduces image
similarity constraints by applying a squared exponential kernel to
image features extracted from dataset images using a pre-trained
convolutional neural network [20]. Model speciic details can be
found in [5], but for this paper it suices to treat this model as a
black-box predictor of image interest.

Attention overlays were generated by sliding a blanking window
over each image and evaluating the change in predicted image
interest. The proposed Gaussian process overlay approximation
algorithm was then tested by measuring the root mean square error
(RMSE) in predicted image overlays, as an increasing number of
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Figure 3: A trace of the scaled root mean square error between approximate and inal blanked overlays shows that the error

typically converges after about 150 samples. The dashed line shows the time parity point - a 240 sample Gaussian process

approximation takes roughly the same amount of time to compute as the full blanked overlay.
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Figure 4: Boxplots of overlay ratings obtained from a domain expert show relatively similar ratings for the approximate and

full overlays. This indicates that there is little diference between approximate and full overlays when more than 50 samples

are used for overlay approximation. Itti-Koch saliency performs poorly, as it lacks the user context provided by the pairwise

comparisons used for image interest inference.

blanked sample measurements were made. The same strides were
used for each approach to ensure a fair comparison. GPFlow [15]
was used to compute the Gaussian processes.

All experiments were conducted on an Intel Core i7-3930K CPU
(3.20GHz x 12) with a GeForce GTX 680/PCIe/SSE2 GPU. Convolu-
tional neural network evaluations were performed in TensorFlow
[1] using GPU acceleration.

Figure 3 shows the scaled root mean square errors as an increas-
ing number of blanking evaluations are used to train the Gaussian
process model. Shaded traces show the 3-sigma error regions. It is
clear that the overlay error seems to converge after roughly 150
samples. The Gaussian process approximation can be trained at
approximately 30 samples a second. Individual iterations are slower

than convolutional neural network evaluations, but signiicantly
more evaluations are required if a full image overlay is generated.
As a result, a full image overlay takes approximately 70 s to gener-
ate, which is equivalent to using 240 Gaussian process samples to
generate an approximation. This means that the Gaussian process
approximation saves approximately 25 seconds per image overlay.

In an attempt to measure the overlay quality, a Likert scale ques-
tionnaire was completed for each image in a storyboard generated
from the outdoor rover dataset. Here, the 64 most interesting im-
ages in the dataset, at least 50 samples apart, were grouped together
to form an image summary, complete with saliency overlays. A
domain expert was then asked to rate each image in the storyboard
using a scale of 1 to 10, with the guidelines that 1 indicated that an
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Figure 5: The igure shows 64-image storyboards with saliency maps generated using a 50 sample Gaussian process blanking

approximation, a 150 sample Gaussian process blanking approximation, the full blanking process and the Itti-Koch saliency

measure.
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overlay was not useful, 5 that an overlay partially covered content
of interest and 10 that the overlay fully highlighted only content
of interest. Figure 4 shows boxplots of the ratings obtained for
overlays generated using an increased number of samples to train
the Gaussian process approximation. Ratings of overlays produced
using the full blanking process and an Itti-Koch saliency generator
are also included for comparison.

The boxplots show that there is very little diference in rating
distributions for the Gaussian process approximations and the full
overlay. This is encouraging, as it means that overlays of equivalent
quality can be produced using very few blanking evaluations. As
further evidence of this, a Kruskal-Wallis test (H = 2.21, p = 0.97)
comparing the Gaussian process approximations and full overlays
was unable to reject the null hypothesis that ratings come from
the same population distributions. The Itti-Koch saliency performs
poorly in the overlay ratings, as it lacks the user context provided
by the pairwise comparisons used for image interest inference, and
does not provide a useful overlay.

This is also made evident when the actual overlay storyboards
generated are inspected (Figure 5). It is clear that the GP approxi-
mation produces overlays of similar quality to the full overlay, and
successfully highlights image content of interest.

In general, the overlays produced are efective at highlighting
smaller vehicles and pedestrians, but struggle with larger content
of interest. This could be attributed to the underlying model used
to predict image interest, but could also be due to the ixed size (16
pixels) of the blanking window used to generate the image overlay.
In practise, this window needs to be tuned to the dataset of interest
or varied to produce overlays as diferent scales.

4 CONCLUSIONS

This paper has shown how a Gaussian process approximation can
be used to generate image overlays, requiring fewer image blanking
evaluations and signiicantly speeding up the image generation pro-
cess as a result. Although we have introduced this approximation
in the context of image overlay generation, the proposed approach
is also of use for visualising machine learning models and could
prove useful for understanding convolutional neural networks.

The experiments conducted here applied an iterative sampling
strategy, where image testing points were selected by evaluating
the variance of the Gaussian process regressor over image positions.
An initialisation strategy using Latin hypercube sampling could
improve upon this and reduce the overlay generation time even
further.

A user study showed that the approximate overlays were rated
similarly to full image overlays. In general, attention overlays are
rated highly for smaller objects, but overlays produced for larger
objects illing the image are not particularly useful. Future work,
which adapts the size of the blanking window as part of the Gauss-
ian process overlay approximation could help to address this.
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