Quantitative grading of store separation trajectories

Kevin Jamison, Pieter Rossouw & Elizna Miles Council of Scientific and Industrial Research Pretoria, South Africa

Ankara International Aerospace Conference
September 2017

Outline

- Background and requirements for store separation analyses
- Acceptance criteria for store separation & jettison
- Approaches for assessing separation dynamics
- Development of quantitative separation criteria
- Implementation of separation grading algorithm
- Applications
- Conclusions

Background and requirements for store separation analyses

Comprehensive aero/mechanical compatibility evaluation must be done when integrating stores onto aircraft

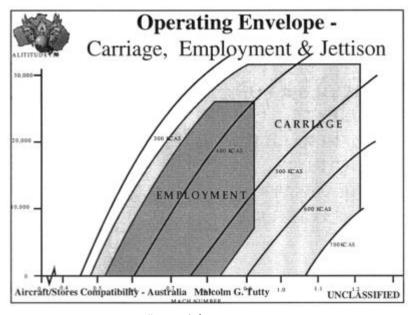
- MIL-HDBK-244A Guide to aircraft/stores compatibility 1990
- MIL-HDBK-1763 Aircraft-stores compatibility 1998

Why? Ensure that:

- All aircraft/store combinations have acceptable aerodynamic, structural, dynamic characteristics
 - under all flight and ground conditions.
- Ensure safety & minimise risk of functional failure

Aspects include:

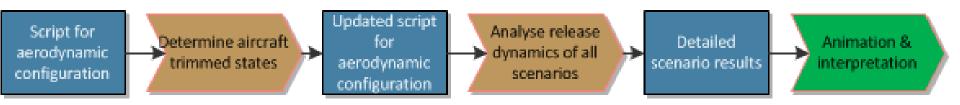
- Carriage loads
- Aeroelastic (flutter) compatibility
- Store separation safety
- Performance & handling


Background and requirements for store separation analyses

- Why are store separation analyses required?
 - Based on painful experience: stores that are individually stable can behave VERY differently in aircraft flowfield

Background and requirements for store separation analyses

- Requirement for store separation analyses - MIL-HDBK-244A
 § 5.1.1.2.3.1(g); MIL-HDBK 1763: 271.4
 - Verify that stores can be released safety over full employment & jettison envelopes
 - Includes all perturbations of:
 - store mass and physical properties
 - ejector rack performance
 - aircraft release flight conditions
 - stations on aircraft
 - neighbouring stores
 - Etc.
 - Results in a very large analysis matrix!



From: Tutty, M.G., "Aircraft/Stores Compatibility - The Australian Perspective", 1998

Acceptance criteria for store separation & jettison

Typical process flow for store separation analyses

Often automated to run multitude of separation scenarios

Acceptance criteria for store separation & jettison

MIL-HDBK-1763 discriminates between two classes of store separation with differing acceptance criteria:

Employment

(store operated in its normal mode to accomplish operational objective)

Jettison

(simply separate the stores from aircraft for safety or performance reasons)

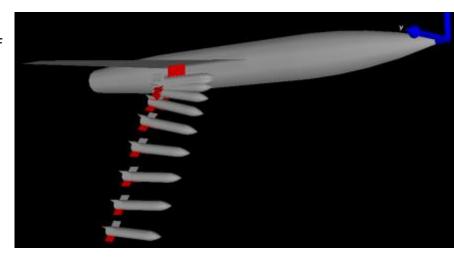
Positive movement away from aircraft

No part of store penetrates interference boundary of aircraft

6 inch (152 mm) encapsulation

Portions of store inside boundary prohibited further encroachment. Once outside no part of the store may re-enter.

In vicinity of aircraft empennage, encapsulation boundary is expanded to ten (10) feet minimum.


Must be safe, not necessarily satisfactory

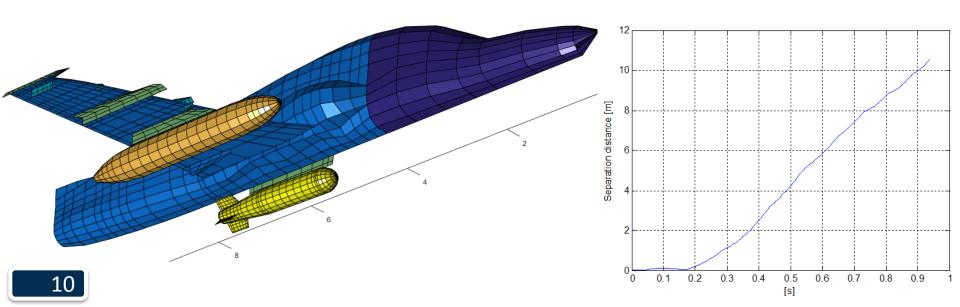
For nonemergency jettison storeto-aircraft contact is unacceptable. For emergency, minor store-tostore or storeto-aircraft contact may be acceptable.

Store may break up, but should not threaten aircraft

Approaches for assessing separation dynamics

- Traditional approach: qualitative assessment of animations & graphs
 - Objections:
 - inconsistent & subjective
 - Analysts easily overwhelmed by volume of results from automated tools
- Need for automated tool to grade separation trajectories quantitatively to criteria traced to regulatory requirements
- Example: BAE CRASH 3D (Akroyd 1998)
 - Determines closest approach point between aircraft & store
 - Focuses solely on separation distance between store & aircraft
 - Criterion for positive movement away from aircraft not evaluated
 - No graduation in criteria

Development of quantitative separation criteria


- No recent papers on topic
 - Schoch (1969(& Covert (1971) present criteria to assess separation acceptability based on initial velocities & accelerations after ejection
 - Analytical criteria supported by available test data
 - Used to judge entire separation trajectory
 - No longer used as entire trajectory can easily be computed nowadays
- Set of separation rating codes proposed based on experience
 - Applicable for ejector released stores; a different scale is required for rail released stores using similar philosophy
 - Need for automated tool to grade separation trajectories quantitatively to criteria traced to regulatory requirements
- Rating codes supported by quantitative analytical criteria
 - Correlates with regulations
 - Developed & refined iteratively over time

Code	Definition				
0	Store strikes some part of the aircraft				
1	Store misses the aircraft marginally				
2	Store moves towards the aircraft				
3	Store "hovers" near the aircraft				
4	Store separates cleanly from the aircraft				

Code	Absolute Separation Distance	Separation Velocity	Separation Velocity Relative to Ejection Velocity
0	< 0		
1	< 0.020 after 0.07 s < store radius after 0.25 s	< 0 before 0.06 s	
2		< 0	
3			< 0.3 Veject after 0.07 s
4			

Implementation of quantitative separation criteria

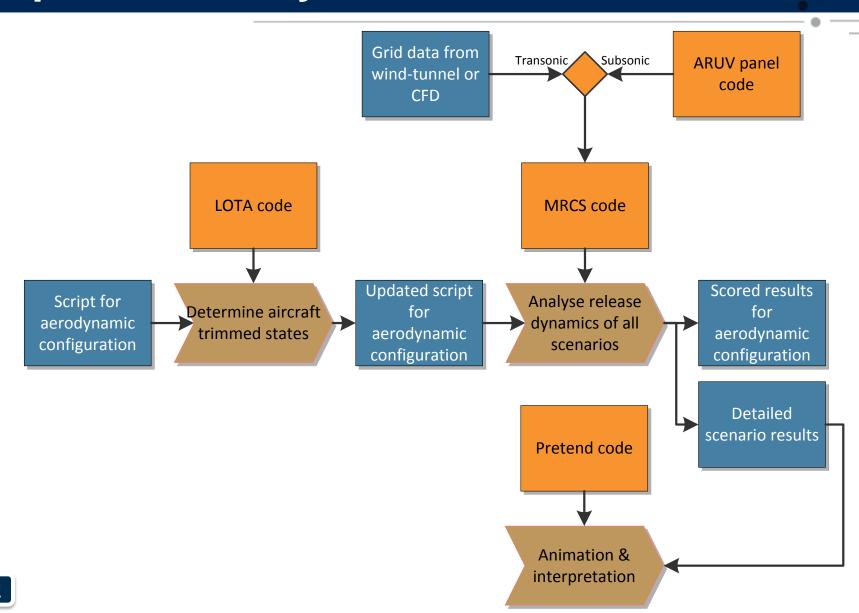
- Separation grading implemented as separate function in CSIR's automated store separation code, MRCS
- As ARUV panel code model usually created for store separation projects, used panelling of the aircraft and the store to define the geometries to calculate miss distances
 - Algorithm slices aircraft & store trajectories into 5 ms intervals
 - At each time interval calculate the distance of all store panel corners from all aircraft panel corners
 - Shortest distance at each time interval is miss distance for that interval

Implementation of quantitative separation criteria

Employment envelope

Release codes 3 & 4 acceptable.

Controllable limitations may be specified to obtain codes of ≥ 3 over wider envelope

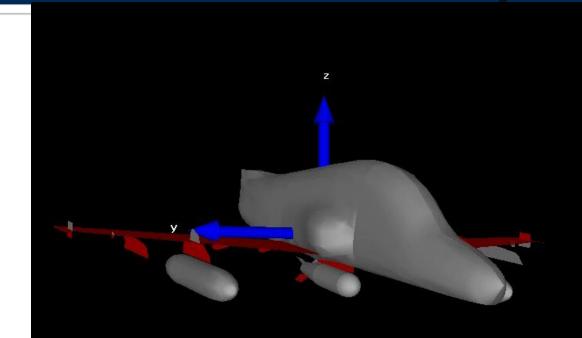

Jettison envelope

Release codes ≥ 1 acceptable

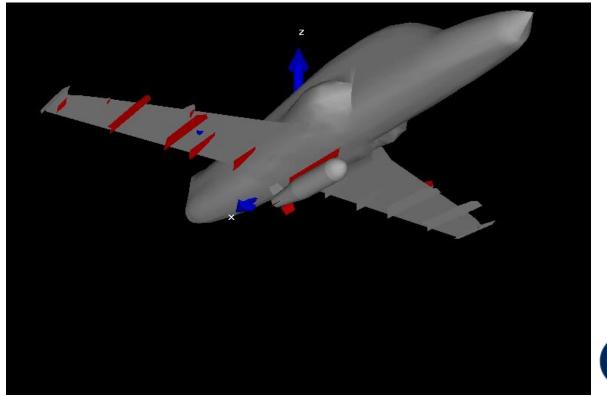
Contact with the aircraft only acceptable during emergency jettison if relative velocities are very low

Controllable limitations may be specified to widen envelope

- Example: emergency jettison analysis of CSIR's Inundu electronics pod from BAE Hawk Mk.120
 - Inundu is airborne pod capable of mimicking radar emissions of threat aircraft/missiles and radar jamming
 - Being developed for aggressor training & electronics test and evaluation
 - Integrated on centreline station with & without drop tanks
 - Pod can accommodate different modular payloads variable CG & mass (±5% mass variation)
 - Pod is self-powered using Ram-Air Turbine (causes asymmetric aerodynamic properties)
- Goal: determine widest permissible emergency jettison envelope
- Cost constraint: use panel code hence only subsonic jettison envelope considered

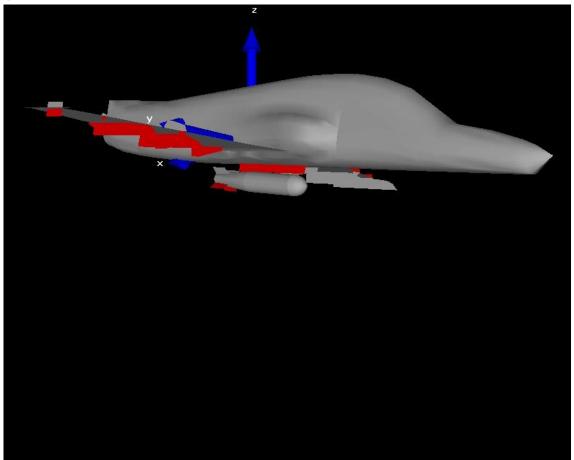

- Separation analysis script
 - Excel file with rows specifying each release scenario
 - Even jettison analysis has hundreds of scenario combinations
 - Use Modern Design of Experiments (MDOE) to optimise scenario combinations
 - Aircraft manual used to determine angles of attack

Envelope point	Mach No.	Alt	Nz	Ejector force setting	Flight Path Angle	Bank Angle	Roll rate	Store Mass	Store cg-	Aircraft Mass
		(ft)	(x 1g)	(%)	(deg)	(deg)	(deg/s)	(kg)	(m)	(kg)



Result examples

 Nominal Code 4: biased T55-T37 ERU: Mach 0.665, sealevel, Nz = 1.5g, ERU = maximum, flight path = -10deg, bank angle = -10deg, roll rate = 10deg/s, store mass = minimum, store CG = front limit, aircraft 80% fuel



- Improvement due to biased ejector configuration
 - Original: Code 0: dual T37-T37 ejector throttles, Mach 0.665, sea-level, Nz = 0.5g, ERU = minimum, flight path = -10deg, bank angle = -10deg, roll rate = 10deg/s, store mass = minimum, store CG = front limit, aircraft 80% fuel

- Improvement due to biased ejector configuration
 - Improved: Code 2: T55-T37 ejector throttles, Mach 0.665, sea-level, Nz = 0.5g, ERU = minimum, flight path = -10deg, bank angle = -10deg, roll rate = 10deg/s, store mass = minimum, store CG = front limit, aircraft 80% fuel

Conclusions

- Development of automated, quantitative store separation trajectory grading algorithm described
 - Automation reduces time to analyse "aerodynamic" configuration from 1 month to 2 – 3 hours
 - Facilitates robust investigation of all perturbations required by regulations increases safety
 - Reduces subjectivity due to manual interpretation of results
 - Clear criteria, agreed upon by all stakeholders facilitates common understanding of results
- Application to jettison analysis of electronics pod described
 - Found pod could not be acceptably jettisoned with ejector release unit (ERU) configured with dual T37 throttles. A biased ERU setup with T55 front & T37 rear throttles provided the largest acceptable jettison envelope
- Quantitative store separation trajectory grading algorithm has been applied with great success to multiple store integration projects at CSIR

Thank you

