
Weems: An extensible HTTP honeypot

Deon Pearson∗,Barry Irwin∗,†, Alan Herbert
∗Department of Computer Science, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa

1g13p1006@campus.ru.ac.za 2b.irwin@ru.ac.za 3a.herbert@ru.ac.za
†Council for Scientific and Industrial Research, Pretoria, South Africa.

2b.irwin@ru.ac.za

Abstract—Malicious entities are constantly trying their luck at
exploiting known vulnerabilities in web services, in an attempt
to gain access to resources unauthorized access to resources. For
this reason security specialists deploy various network defenses
with the goal preventing these threats; one such tool used are
web based honeypots. Historically a honeypot will be deployed
facing the Internet to masquerade as a live system with the
intention of attracting attackers away from the valuable data.
Researchers adapted these honeypots and turned them into a
platform to allow for the studying and understanding of web
attacks and threats on the Internet. Having the ability to develop
a honeypot to replicate a specific service meant researchers
can now study the behavior patterns of threats, thus giving a
better understanding of how to defend against them. This paper
discusses a high-level design and implementation of Weems, a
low-interaction web based modular HTTP honeypot system. It
also presents results obtained from various deployments over a
period of time and what can be interpreted from these results.

Index Terms—Internet security, Network security, HTTP Hon-
eypots

I. INTRODUCTION

Honeypots serve a valuable role in understanding and
protecting against cyber-attacks. According to [1] a honeypot
can be defined as “. . . a security resource whose value lies
in being probed, attacked or compromised.” Honeypots can
serve several purposes, they can lure an attacker away from
valuable network resources, warn network administrators of
possible exploitation or provide valuable data for an in-depth
examination of attack methods [2]. This philosophy of luring
attackers to a web server designed to be hacked and attacked,
has evolved into what we now refer to as the “honeypot” [3].

Honeypots can take on one of two architectural designs,
low-interaction or high-interaction. A low-interaction honey-
pot is one which replicates a specific service on a server and
nothing more. A high-interaction honeypot however, replicates
the full server and all the processes on it. Weems is built
as a low-interaction web based HTTP honeypot. Its goal is
to provide a tool for the research into known and unknown
threats from the Internet. To achieve such a system, four key
features were addressed in the design:

1) Weems must be capable of responding to all HTTP GET
and POST requests from any web client.

2) Each request received by the system must be logged
and recorded with as much information on the request
as possible.

3) Weems must be designed to be deployable on multiple
IP address, in multiple locations at the same time,
independent of each other.

4) Weems must be designed as a modular system to
provide extensibility during its deployment. This exten-
sibility will allow for new modules to be developed and
added to each instance of Weems. Allowing for furture
tailoring to specific data collection needs.Furthermore

developing a honeypot with the default ability to re-
spond to all requests without giving any error messages

Weems aims to provide a variation to the traditional honeypots
discussed in Section II. By developing a modular system
which is easily extensible, Weems provides the ability to adapt
to new threats or new requirmments without the need for a
complete redesigning from the ground up. Furthemore, having
a fully adaptable, customizable and open source system allows
each indivdual to taylor Weems to their specific needs.

The remainder of this paper is laid out as follows.

• Section II discusses existing client and server side hon-
eypot systems used in the research and analysis field.

• Section III presents a short explanation a server-side
honeypot and how it is designed.

• Section IV presents the design of Weems along with
the various components and sub-components which were
developed into the system.

• Section V summarizes the live testing environment used
for the duration of the testing phase.

• Section VI discusses the analysis and conclusions which
can be drawn form the log entries received during the
testing and deployment phase.

• Section VII concludes the paper bring the work to a close
with conclusions and future work.

II. RELATED WORK

Honeypots are not a new concept; previous research and
development of honeypots have produced many types and
varieties of honeypots. The honeypots discussed in this section
are unique in the way they operate and the threats they target.
These honeypots are significant to this project because they
all are web based HTTP honeypots focusing on the malicious
client or server entity on the Internet.

A. HoneyC

HoneyC is designed to emulate a web client issuing a
request to a web server [4]. The goal of HoneyC is catch
web server that serve malicious content back to the client. To
achieve this HoneyC maintains a list of URLs which it plans
to investigate. For each URL the system will send a request
and wait for the response before analyzing it to determine if
there is any malicious code being sent back.

B. Glastopf

Glastopf was developed to emulate a set of known vulner-
abilities currently being exploited on the web [5]. Glastopf
employs a distributed architecture with honeypots located in
various parts of the world. All the data recorded by these
honeypots such as the log files are stored in a central MySQL
database. Glastopf was designed to initially have a small

Page 234 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017

set of predefined attack templates. These templates can be
monitored to build pattern matching software to match each
URL against. Over time it will compile a list of vulnerabilities
by monitoring which URL is being requested by an attacker
and adding it to their search index.

C. MWCollectD

The main purpose of MWCollectD is to emulate known
vulnerable protocols [6]. The purpose of this emulation is to
catch malicious worms attempting to propagate themselves
to other systems. These worms will propagate themselves
through the execution of shell code on a target system. The
goal of MWCollectD is to entice malicious worms to execute
code on the system, allowing the shell code to be captured
and analyzed. As part of the analysis MWCollectD attempts
to execute the code in a controlled environment using a tool
called Libemu [7], which allows the developers to gain further
understanding of how the infection works, while preventing
the worm from gaining control of the system.

D. Honeyware

Honeyware attempts to mimic a client browser interact-
ing with a web server. The goal is to determine if the
server has any malicious code running on it [8]. Honeyware
was developed to overcome two main challenges identified
in current low-interaction honeypots, IP tracking and Geo-
location. IP tracking is when a malicious server will only
send malicious code back to a client after the client makes
a number of requests to the server. Geo-location dependent
servers implement a feature which presents malicious code
to clients browsing from a specific country or continent. To
bypass the IP tracking feature on malicious web servers,
Honeyware will issue the same request multiple times in
an attempt to activate the malicious code. To overcome the
Geo-location feature the designers of Honeyware had to first
determine the top locations for malicious attacks and deploy
the server in these location to bypass Geo-location dependent
servers.

III. HONEYPOTS

Honeypots can be desinged to opperate as either client or
server side applications. The characteristics of a client-side
honeypot according to [9] are:

• Their purpose is to detect malicious servers posing a
threat to web clients visiting the web server.

• They provide information client-side attacks present on
the Internet.

• They are active honeypots, they go out searching for
malicious web servers.

The characteristics of a server-side honeypot according to [9]
are:

• It replicates a vulnerable web server. The purpose is to
attract malicious clients to interact with the honeypot.

• Server-side honeypots are passive honeypots; they sit on
the Internet waiting for an attacker or worm to interact
with it.

• The aim behind is to log the client interactions in the
hope capturing attempts at exploiting the web applica-
tion.

• It is developed with specific vulnerabilities designed
to lure the attacker to exploit the honeypot. The goal

is to convince the attacker they are interacting with a
legitimate web server.

When a web client and server communicate with each other
they pass HTTP messages between each other. The ability
to correctly accept and respond to these messages enable a
web server to be turned into a honeypot. An HTTP message
contains the request and the payload. The request line is of
most importance in a honeypot. This is due to the fact that it
gives al the information on what action the attacker is trying
to perform and on what resource. The payload proves useful
when the attacker is uploading data such as web shells or
scripts. The payload can be dumped to a file for furture use.

IV. DESIGN AND IMPLEMENTATION

A key design aspect of Weems is its ability to be rapidly
deployed in a minimal hardware environment for a period of
time. To achieve this, Weems needed to be light-weight and
easy to use. For this reason Weems was developed in a Linux
environment using Python 2.7.12. To provide the web server
capabilities, Flask1 was chosen for the web framework and
Jinja2 to was chosen for the templating engine.

Weems must be capable of responding to any HTTP request
issued by any web client. However, simply responding to
a request does little in the way of mimicking a particular
service. Therefore, Weems is designed to respond to a request
in a specific way based on the type of request being received.

The default response to any request is an HTTP/200

response. This type of response tells the client that the
resource they are requesting does exist on the server. Often
the requesting client is sending the request from a none web
browser platform probing for a resource. Therefore, a simple
response such as HTTP/200 is enough to signal to a client
that the request was successful. The client is not concerned
about the actual content of the message, only that the resource
exists.

When a malicious client receives an HTTP/200 response,
they are enticed to issue further exploitation requests. Subse-
quent attempts will all be met with an HTTP/200 or a more
specific response based on the resource being requested. The
following points highlight the significance of the subsequent
requests received by the system:

• Analyzing these requests will allow for the identification
of the types of exploitation and web attacks on the
Internet.

• By studying the requests and determining the resources
being requested, one is able to develop new or improved
modules to provide a more realistic response.

Responding to any URL request with an HTTP/200

message does little in the way of masquerading as a web
server running the full service. It simply signals to the client
that the request was successful and the resource exists. To
successfully monitor attack methods and identify potential
vulnerabilities in services, Weems needs respond with more
realistic responses back to the client to make the client-server
interaction process closer to the real service.

The overall design of Weems can be conceptualized into
three main components. Each component plays a crucial role
in the system as a whole. Figure 1 shows the three components

1http://flask.pocoo.org/
2http://jinja.pocoo.org/

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 235

Fig. 1. System Overview

and the communication paths occurring between them, the
Server component, the Reporting component and the Module
components. The visitor in Figure 1 is the client, interacting
with the web server making requests and receiving responses.

The components can be further divided into sub-
components. The Server component consists of the Con-
troller, Request Handler and Logger sub-component. It is
responsible for handling HTTP requests and sending HTTP
responses. The Module component consists of any number
of sub-components depending on the vulnerabilities being
replicated at the time of running Weems. These modules are
made known to the Request Handler at runtime allowing for
requests to be passed to their specific modules to be processed.

In staying with the modularity and extensibility aspect, each
component bar the Controller can be redesigned, reconfigured
and replaced with another more suitable component. For
example, the Logger which is discussed in Section IV-E is
responsible for logging each request made to Weems. How
the logging is done and where the request is logged to is
fully dependent on the requirements at the time of running
the instance.

For logical explanatory purposes the Controller and Re-
quest Handler are discussed and represented separately. How-
ever, in reality the Controller and Request Handler operate as
a single unit, relying on each other to form an operational web
server.

A. The Controller

The Controller component is the core of Weems, it is
responsible for the overall running of a web server instance.
When an instance of Weems is executed it is assigned a unique
IP address, which is a combination of an IP address and TCP
port number for example 127.0.0.1:8080 or 192.192.192.3:80.
Any connection and subsequent HTTP request to this Port/IP
endpoint will be accepted and processed by the system. On
receiving a request, the Controller will execute two actions:

1) Call the Logger to create a log entry for the request
received.

2) Pass the full request to the Request Handler. When
the Controller has passed the request to the Request
Handler its role in the system is complete.

B. The Request Handler

The Request Handler receives the request from the Con-
troller. When a request is received, the Request Handler must
process it accordingly. At this point the Request Handler must
decide which module the request will be passed to. One of two
choice will be made by. The Request Handler can call either
a specific module or the default module (see Section IV-D).
If there is no module for the requested path, the handler
invokes the default handler function to create a generic HTTP
/200 response. If however, there is a module present for the
requested URL or path, the Request Handler will call the
relevant module to handle the request further.

Each module is responsible for how to handle the request
and the type of response to send back to the client. The
Request Handler simply decides who should handle the
request.

C. Response Handler

The Response Handler is a logical component of the Flask
web framework. It forms part of the Request Handler. Its
role is to send a suitable response to the web client. The
Response Handler is included in the Flask web framework;
the list below according to [10], shows the four steps Flask
uses when determining how to handle response.

• If a response is of the correct type such as text/html,
it is returned to the client.

• If the response is a string (e.g. return (’Flask

response’)), Flask must create a response object with
the data provided and the default parameters.

• Flask allows tuples to be returned in the form (

response, status, headers). If a tuple is re-
turned, there must be at least one item in the tuple.

– Response: is the actual response to be sent
– Status: is the HTTP response code which will over-

ride the default response code sent by Flask.
– Headers: are the HTTP header fields. These can be

in the form of a list or dictionary.

• The default behavior will be for Flask to treat the
response as a Web Server Gateway Interface (WSGI)
and convert it into a response object. WSGI is a simple
interface between web servers and web applications or
frameworks. The goal of WSGI is to provide a universal
interface capable of supporting interactions between the
web server and the web framework [11].

D. Default Handler

If the Request Handler cannot find a module for a requested
path Weems must still be able to accept the request and
send back some response. The requesting client must still
receive a response signaling the request was successful. The
Default Handler is responsible for such cases where there is
no implemented module which can handle the request. The
Default Handler must first determine if the request method is
a GET or POST method. If the request is a POST request,
the Default Handler will attempt to save any extra data in the
request.

E. The Default Logger

When the Controller calls the Logger, it does not know
how the Logger creates the logs or what logs are created. The
Controller simply makes the call to the Logger; the Controller

Page 236 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017

does not know what the Logger does or how it logs the
requests. Although a logging module is always required by
Weems, it is up to the user as to what this logging module
does. When the Controller calls the Logger it does not require
any response, it simply passes the full request to the Logger
and continues with its operation.

For this project the Logger has been implemented with
three types of logs.

1) Access Logs: This project has chosen to use the apache
Common Log Format (CLF) for the access logs, be-
cause it is a widely adopted logging format amongst
web servers. As such, there is a widely available set
of analysis tools and techniques available to use when
analyzing the requests logged to Weems.

2) Request Logs: The request logs serve the purpose of
providing additional information on the request being
received. The access logs simply log the request URI
and requesting client, the Request logs provide an
ability to determine what type of client was making
the request, ie, a web browser, a bot or a web crawler.

3) POST Logs: The POST logs serve the purpose of
dumping the full HTTP POST message to a text file
for future analysis. If the logging handler determines
the method is a POST request, it will dump the entire
contents of the request message to a file. The Logger
does this to provide as much information on POST
requests as possible.

F. The Reporter

The Reporter is responsible for providing information back
to the administrator of Weems. The Reporter is a web
accessible list of available access logs. Access to these reports
are limited to a specific clients browsing from a specific IP
address and key combination. This module is considered an
administration module and is therefore only accessible by
administrators of Weems. The following all have to be true
to allow the client to access the reporting page of Weems:

• The client must be accessing the instance from a prede-
fined administration IP address.

• The client must make a request to a URL, which has been
determined in the configuration of the module. This can
be any value set by the developer.

G. The Module Controller

The Module component is composed of any number of
modules for specific vulnerabilities. If a vulnerable URL or
path is being monitored it is likely there will be a module im-
plemented; in such a situation the module takes responsibility
for processing the request. Each module must be registered
with the module controller before the Request Handler knows
about the module.

This project implemented four example modules targeting
vulnerabilities and one additional module for uploading files.
The vulnerability modules implemented were the WordPress
Administration, WordPress Login, SQL Injection and Remote
File Inclusion modules. The additional module was the File
Upload module. The remaining sections will briefly discuss
each module.

H. SQL Injection

In code injection attacks, attackers are attempting to inject
their own malicious code into an application’s database. The
goal of a code injection attack is to force the web server to
execute the code on the local server with elevated privileges
used by the vulnerable application. Accomplishing this will
open the door to further exploitations on the server [12].

When code is injected into an application it is generally
done so in a string format with the attempt to get the
application to read the string as executable code. The most
popular code injection attack is SQL injection (SQLi). This
attack happens when an attacker constructs a string containing
SQL commands which is then entered into a search box or
login form. When the injected code is retrieved from the
database in the future it will run as SQL code and force the
database to perform unintended actions [13].

I. WordPress

A WordPress server has many known vulnerabilities [14].
For this project two vulnerabilities or potential vulnerabilities
were identified and modules were implemented to replicate
them. The first module was aimed at capturing exploitation
attempts in the “/wp-admin” resource and the second mod-
ule was intended to capture authentication bypass attempts in
the “/wp-login.php” resource.

1) WordPress Admin: The wp-admin handler serves the
purpose of sending a WordPress administration page back to
the client if a request is made for /wp-admin. The purpose
of this is to emulate a successful attempt to open the “/wp-
admin” page and to entice the attacker to attempt further
interactions with the “/wp-admin” page. All requests made
to this page would be logged in the access logs for record.

2) WordPress Login: When a request is made for the
“/wp-login.php” resource the Request Handler calls the
wp login handler. The wp login handler is responsible firstly,
for sending the WordPress login page to the client and sec-
ondly for recording each username and password combination
used to bypass authentication. The purpose of logging the
username and password received, for a log in attempt, is to
monitor the brute force attempts, or exploitation attempts to
gain access to the WordPress administration resource.

J. Remote File Inclusion

A remote file inclusion attack is an attempt by an attacker
to force the web server to run malicious code on its web page
by retrieving code from a URL located on a remote public
server [15].

The Remote File Inclusion (RFI) module is designed to
capture any attempts to include files from another URL. If a
request is received, containing a URL redirecting to another
page for example 127.0.0.1:8080/foo/bar&page=

http://example.com the attacker is attempting to make
Weems fetch a resource from http://www.example.

com.

K. File Upload

The file upload module provides the ability to upload a file
to Weems via a simple web page. The purpose of this is to
present the client with the perception of being able to upload
any file (web shell or script) to the server, which they may
use as a spring board for further attacks.

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 237

V. LIVE DEPLOYMENT

Four geographical locations were chosen to host the virtual
servers and instances of Weems. The locations were chosen
based on access to virtual server hosting infrastructure and
diversities in the countries technological advances. The in-
stances ran for a period of 30 days. Table I shows the four
geographical locations and the number of instances at each
location, as well as the hosting platform used.

TABLE I
SUMMARY OF INSTANCES

Country Code Hosting Service Instances

America USA Digital Ocean 1

Singapore SG Digital Ocean 1

Germany DE Digital Ocean 1

South Africa ZA Private Servers 4

Table II summarizes the requests received for each instance.
To get a true representation of the number of different requests
being made the URLs need to be distinguishable. Identifying
unique requests a combination of two parts to be different,
the path and the HTTP version. For example, GET /foo

HTTP/1.0 and GET /foo HTTP/1.1 are considered to
be two different requests.

TABLE II
INSTANCE DATA

Instance Unique IP’s Unique URLs Total Hits

USA 1044 17631 24516

SG 251 123 1946

ZA2 158 57 417

DE 219 77 413

ZA3 143 60 350

ZA1 120 59 329

ZA4 121 39 255

VI. ANALYSIS

An examination of the collected log files revealed a wide
range of requests being made to each instance of Weems. This
section will highlight some of the notable requests captured
by Weems during the deployment stage of the project. Before
analyzing the log files, some requests needed to be excluded
from the list of possible candidates. This list below shows
the criteria used to determine whether to exclude a type of
request or not.

1) Requests for “/” where omitted from the logs because
these requests topped all the logs and gave and gave no
further information about the clients request.

2) Requests “favicon.ico” are typically seen when a
browser is used to request a web page. This request
was seen in conjunction with “/” requests and therefore
gives little information as to the intent of the client.

3) Requests originating from web crawlers browsing recy-
cled IP addresses.

After excluding irrelevant requests, the following criteria
was used to determine which requests to study further.

1) The total number of requests received containing the
URI.

2) Did it form part of a combination of other requests.
3) How out of place did the request path look.
4) Was the requests an obvious exploit.
5) In how many other instances the request appeared.

After applying the selection criteria listed above, Table III
summarizes the most frequent requests received common to
all the instances.

TABLE III
MOST FREQUENT REQUESTS

Request/Group Name Instances No.

Authentication Bypass Ex-
ploits

SG, USA, DE, ZA1, ZA2,
ZA3, ZA4

7/7

Freaky Ghost SG, USA, DE, ZA1, ZA2,
ZA3, ZA4

7/7

DFind Scanner SG, USA, DE, ZA1, ZA2,
ZA3, ZA4

7/7

i18n Vulnerability SG, USA, DE, ZA1, ZA2,
ZA3, ZA4

7/7

HNAP Vulnerability SG, DE, ZA1, ZA2, ZA3,
ZA4

6/7

CGI Directory Listing DE, ZA1, ZA2, ZA3, ZA4 5/7

phpMyAdmin DE, ZA1, ZA2, ZA3, ZA4 5/7

IP Camera Vulnerability ZA2, ZA3, ZA4 3/7

A. Authentication Bypass Exploits

A common sequence of requests being made to Weems can
be seen in Listing 1. The requests were consecutive requests
originating from the same IP address. The attack consists of
four sequential requests within a second of each other.

1 [21/Sep/2016:20:56:53 +0152] ‘‘GET /cgi/
common.cgi HTTP/1.0’’

2 [21/Sep/2016:20:56:53 +0152] ‘‘GET /stssys.
htm HTTP/1.0’’

3 [21/Sep/2016:20:56:54 +0152] ‘‘GET / HTTP
/1.0’’

4 [21/Sep/2016:20:56:54 +0152] ‘‘POST /command
.php HTTP/1.0’’

Listing 1. IP Camera Authentication Bypass Exploit

The overall conclusion about the series of attacks is that
the attacker is probing for vulnerabilities in network devices
such as IP cameras, routers and network printers. The probe
is searching for devices which do not require authentication to
access certain parts of the web interface [16]. The following
points discuss each line in Listing 1.

• Line 1 according to [16] is an attempt to retrieve the
common.cgi file from an IP camera. The file contains
information such as the public IP address, MAC address,
name, version number and gateway address of the IP
camera [16]. With this information the attacker may
return to attempt further attacks on the device.

• Line 2 shows an attempt to exploit a vulnerability in
TRENDnet Print Servers where the attacker is able to
reset the print server remotely to factory details. If the

Page 238 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017

request returns the expected result the attacker will return
to attempt to reset the printer to factory settings in an
attempt to gain sensitive information [17].

• Line 4 is an attempt to exploit a hole in D-Link Wireless
Routers by means of command injection into the web
administration page [18]. Listing 2 shows the body of the
POST request. The probe is simply attempting to create
a text file in the /var/tmp folder and printing the file
back to the web page. If the command is successful this
signals the Router is vulnerable to injection attacks [18].

cd /var/tmp && echo -ne \\x3610cker > 610
cker.txt && cat 610cker.txt

Listing 2. Command POST

B. CGI Directory Listing

CGI (Common Gateway Interface) is the standard for how
a web server and client communicate via the Internet. It
defines the process of a server passing a web request to an
application, receiving the response from the application and
returning the data back to the client [19]. The query string
is used to issue the command of what to print out. Listing 3
shows example request lines for a CGI bin exploitation. Line 1
shows the server side code which is executed when a request
is received for /cgi-bin/test-cgi. Lines 2 and 3 shows
two variants of how an attacker can give the command to list
the contents of any directory. In this example it is the root
directory. The first method used is through the web browser
and the second example is through a telnet command [19].

1 echo QUERY_STRING = $QUERY_STRING
2 GET /cgi-bin/test-cgi/*
3 GET /cgi-bin/test-cgi?x> /*

Listing 3. Example CGI Bin Exploit Process (Adapted from [19])

VII. CONCLUSION

Due to the ever increasing threat from malicious web
clients, there is the need to understand the threat patterns and
behaviors. Developing a honeypot which addresses each and
every threat is not possible. However, developing a platform
from which threat specific modules can be built and integrated
is more realistic. Weems was designed as a modular, low-
interaction web based HTTP honeypot which can be run in a
low resource environment for a short to long period of time.
The advantages of building a modular system are extensibility,
scalability and adaptability, all of which are core features
of Weems. The modular design of Weems meant that each
component can be redesigned with richer functionality to suit
the needs at time.

During the testing phase of the project it was concluded
that Weems can indeed be deployed in multiple locations
independent of the each other. The success of the project
was further confirmed after analysis on the logs revealed
a substantial amount of probing attempts by bots searching
for vulnerable services on Weems. Although the were many
requests to Weems for known vulnerabilities, there were
no recorded exploitation attempts to any of the services
implemented. Despite this, the results show that Weems can
be used as a simple request logging web server as well as a
honeypot masquerading multiple web services.

ACKNOWLEDGMENT

This work was undertaken in the Distributed Multimedia
CoE at Rhodes University, with financial support from Telkom
SA, Tellabs/CORIANT, Easttel, Bright Ideas 39, THRIP and
NRF SA (UID 90243). The authors acknowledge that opin-
ions, findings and conclusions or recommendations expressed
here are those of the author and that none of the above
mentioned sponsors accept liability whatsoever in this regard.

REFERENCES

[1] A. Christoforou, H. Gjermundrød, and I. Dionysiou, “Honeycy: A
configurable unified management framework for open-source honey-
pot services,” in Proceedings of the 19th Panhellenic Conference on
Informatics, ser. PCI 15. New York, NY, USA: ACM, 2015, pp. 161–
164.

[2] I. Mokube and M. Adams, “Honeypots: Concepts, approaches, and
challenges,” in Proceedings of the 45th Annual Southeast Regional
Conference, ser. ACM-SE 45. New York, NY, USA: ACM, 2007,
pp. 321–326.

[3] L. Spitzner, Honeypots: tracking hackers, A. Wesley, Ed. Addison-
Wesley Reading, September 2002, vol. 1. [Online]. Available:
http://www.it-docs.net/ddata/792.pdf

[4] C. Seifert, I. Welch, and P. Komisarczuk, “HoneyC The low-interaction
client honeypot,” Proceedings of the 2007 New Zealand Computer
Science Research Student Conference, Waikato University, Hamilton,
New Zealand, August 2007.

[5] L. Rist, S. Vetsch, M. Kobin, and M. Mauer. (2010, November)
A dynamic, low-interaction web application honeypot. Online.
Glastopf. [Accessed: 19 April 2016]. [Online]. Available: http:
//honeynet.org/papers/KYT glastopf

[6] G. Wicherski, “Placing a low-interaction honeypot in-the-wild: A review
of mwcollectd,” Network Security, vol. 2010, no. 3, pp. 7 – 8, 2010.

[7] A. M. Shukor. (2012, May) Libemu. Online. [Accessed: 27 April
2016]. [Online]. Available: https://launchpad.net/libemu

[8] Y. Alosefer and O. Rana, “Honeyware: a web-based low interaction
client honeypot,” in Software Testing, Verification, and Validation Work-
shops (ICSTW), 2010 Third International Conference on, vol. 3. IEEE,
2010, pp. 410–417.

[9] J. Biswas, “Analysis of client honeypots,” International Journal of
Computer Science and Information Technologies, vol. 5, no. 4, 2014.

[10] A. Ronacher. (2015) Flask. Online. [Accessed: 5 September 2016].
[Online]. Available: http://flask.pocoo.org/docs/0.11/

[11] J. Gardner, “The Web Server Gateway Interface (WSGI),” The Definitive
Guide to Pylons, pp. 369–388, 2009.

[12] L. Coppolino, S. DAntonio, G. Mazzeo, and L. Romano, “Cloud secu-
rity: Emerging threats and current solutions,” Computers & Electrical
Engineering, pp. 1–15, March 2016.

[13] D. Dede. (2014, November) Most common attacks affecting
todays websites. Online. [Accessed: 25 February 2016].
[Online]. Available: https://blog.sucuri.net/2014/11/most-common-
attacks-affecting-todays-websites.html

[14] A. Welss. (2012, April) Top 5 wordpress vulnerabilities and how to fix
them. Online. eSecurity PLanet. [Accessed: 13 September 2016].
[Online]. Available: http://www.esecurityplanet.com/open-source-
security/top-5-wordpress-vulnerabilities-and-how-to-fix-them.html

[15] O. Katz, “Detecting remote file inclusion attacks,” Breach Security,
Tech. Rep., May 2009.

[16] W. Campbell, “Security of internet protocol cameras - a case example,”
in Australian Digital Forensics Conference, December 2013, pp.
20–25. [Online]. Available: http://ro.ecu.edu.au/cgi/viewcontent.cgi?
article=1115&context=adf

[17] A. Sanadi, “TRENDnet Print Server Authentication Bypass Vulnerabil-
ity,” SecPod, Tech. Rep., 2013.

[18] Neon Prime Time. (2016, August) command.php wget HTTP
Post. Online Blog. [Accessed: 14 October 2016]. [Online].
Available: https://neonprimetime.blogspot.co.za/2016/08/commandphp-
wget-http-post.html

[19] Mudge. (1996) test-cgi vulnerability. Online. [Accessed: 16 Ovtober
2016]. [Online]. Available: http://insecure.org/sploits/test-cgi.html

Deon Pearson Completed Honours in 2016 and is currently studying towards
a Masters in Computer Science at Rhodes University. His research is
supervised under Prof. Barry Irwin in the Security and Networks Research
Group.

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 239

