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Abstract Several blood-feeding organisms, including the malar-
ia parasite detoxify haem released from host haemoglobin by
conversion to the insoluble crystalline ferriprotoporphyrin IX di-
mer known as haemozoin. To date the mechanism of haemozoin
formation has remained unknown, although lipids or proteins
have been suggested to catalyse its formation. We have found
that b-haematin (synthetic haemozoin) forms rapidly under phys-
iologically realistic conditions near octanol/water, pentanol/
water and lipid/water interfaces. Molecular dynamics simula-
tions show that a precursor of the haemozoin dimer forms spon-
taneously in the absence of the competing hydrogen bonds of
water, demonstrating that this substance probably self-assembles
near a lipid/water interface in vivo.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Malaria remains a leading public health and economic bur-

den, especially in Africa [1]. Gaining a deeper understanding of

processes in the malaria parasite is crucial to development of

new antimalarials. During its pathogenic blood stage the

malaria parasite Plasmodium falciparum digests a large propor-

tion of host red blood cell haemoglobin. The haem released is

oxidised to ferriprotoporphyrin IX (Fe(III)PPIX) and at least

95% of it is sequestered in the form of haemozoin (malaria

pigment) [2]. Quinoline and related antimalarial drugs are be-

lieved to act by interfering with this process, possibly by inhib-

iting haemozoin formation, an unusual biomineralization

process [3]. Haemozoin also appears to significantly influ-

ence the immunological response of the host to malarial infec-

tion [4]. Furthermore, haemozoin has been identified in

other blood-feeding organisms including protozoans (Haemo-

proteus columbae) [5], helminths (Schistosoma mansoni) [6]

and insects (Rhodnius prolixus) [7]. Despite elucidation of the
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structure of haemozoin [8], its mechanism of formation re-

mains unknown.

Several hypotheses have been proffered to explain haemoz-

oin (Hz) crystallisation in malaria parasites. Two that cur-

rently enjoy support are lipid catalysis [9] and catalysis or

nucleation by histidine rich protein 2 (HRP2) [10]. However,

it has recently been shown that HRP2 is mainly localised in

the erythrocyte cytosol of the infected red cell, with only a

small fraction located in the parasite food vacuole (FV) where

Hz crystals are located [11]. In addition, P. falciparum clones

lacking both HRP2 and HRP3 are reported to form Hz nor-

mally [5,12]. Lastly, HRP2 homologues are not known to be

involved in Hz formation in other organisms. On the other

hand, the fastest b-haematin formation rate under physiologi-

cal conditions reported to date is that in the presence of mono-

oleoylglycerol (MOG) [13]. Furthermore, unusual neutral lipid

bodies composed of di- and triacylglycerols have been shown

to be associated with the FV of P. falciparum and have been

implicated in Hz formation [14]. In addition, Hz formation

in S. mansoni and R. prolixus is localised in lipid droplets

and on the perimicrovillar membranes respectively [15]. None-

theless, to date experimental rates of b-haematin formation

brought about by either HRP2 or lipids are far too slow to

account for Hz formation in vivo. For example, even if it is

assumed that haemoglobin degradation occurs at a constant

rate throughout the late ring and trophozoite stages of the

blood cycle (a period of about 20 h) [16] the Fe(III)PPIX

released would need to be converted to Hz with a maximum

half-life of about 40 min to account for the fact that non-Hz

Fe(III)PPIX is undetectable [2] in the Mössbauer spectrum

of late trophozoites. In studies reported to date in which

kinetic data are presented, half-lives under physiological

conditions are typically at least several hours long [13].

Furthermore, previous studies have been essentially phenome-

nological, providing no underlying mechanistic explanation of

Hz formation.
2. Materials and methods

2.1. Preparation of b-haematin in octanol/water, pentanol/water or lipid/
water systems

Hematin (HO–Fe(III)PPIX) was first dissolved in 0.1 M NaOH and
then mixed with acetone (6:4 acetone:water) to form a 3.33 mg/ml
solution. The Fe(III)PPIX solution (1 ml) was introduced close to
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Infrared, XRD and resonance Raman evidence for the
formation of b-haematin near the interface of octanol/water, penta-
nol/water and MMG/water. Two large Nujol peaks obscure the region
between 1550 and 1320 cm�1 and have been hidden for clarity. The key
peaks at 1660 and 1210 cm�1 are unaffected. (A) IR spectra of: (i) Hz
extracted from P. falciparum, (ii) b-haematin formed after 30 min
incubation near octanol-water interface, aqueous solution buffered
with 0.05 M citrate, pH 5, 37 �C; (iii) b-haematin formed near the
pentanol-water interface, conditions as for (ii), but 5 min incubation at
pH 4.8; (iv) b-haematin formed near the interface of MMG-water,
conditions as in (ii), but pH 4.8; (v) product obtained from incubation
of Fe(III)PPIX in aqueous solution, pH 4.8, 37 �C, 30 min; (vi)
product obtained from incubation of Fe(III)PPIX in pentanol, 37 �C,
30 min. Vertical dotted lines emphasize the peaks arising from
coordination of the propionate group to Fe(III) in Hz/b-haematin.
Spectra v and vi are characteristic of haematin. (B) XRD of b-
haematin obtained from pentanol/water. Conditions as for spectrum
(iii) in part A. The XRD pattern is characteristic of b-haematin [30].
(C) Resonance Raman spectrum of b-haematin recorded close to the
pentanol-water interface. The spectrum is identical to those previously
recorded of b-haematin and haemozoin at this excitation wavelength
(782 nm) [31,32].
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the interface between the octanol or pentanol and water. A control
experiment using the indicator methyl red demonstrated that the
NaOH is neutralised in less than 3 s and is therefore unlikely to play
any further part in the process. Typically, we used octanol or pentanol
(10 ml) and an aqueous solution (50 ml) buffered at pH 5 with 0.05 M
citrate in a cylindrical vessel with an internal diameter of 6.5 cm
and the mixture was incubated at 37 �C for 30 min. In the case of
the octanol system, the mixture was agitated with a glass rod at the
end of the incubation period to ensure transfer of solid particles to
the aqueous layer. The product was isolated by filtration of the aque-
ous layer through a cellulose acetate filter disk. In the case of the pent-
anol system, the whole mixture could be filtered without prior
separation.

For the lipid system, the long chain alcohol was replaced with a layer
(1 ml) of lipid (0.5 mg/ml) dissolved in acetone:methanol or chloro-
form:methanol (1:10 v/v). In the kinetics experiments, the concentra-
tion of Fe(III)PPIX was 0.67 mg/ml and 0.5 ml was added to the
lipid solution layer.

2.2. Characterisation of products
The products were characterised by Fourier transform infrared

(FTIR) of undried material as Nujol mulls, powder X-ray diffraction
(XRD) of the extensively washed (0.1 M NaHCO3, pH 9.1, and
methanol) and dried product and by using a resonance Raman
(RR) probe in situ near the pentanol/water interface. XRD was
performed using Cu Ka radiation (k = 1.541 Å), with data collection
on a Philips PW1050/80 vertical goniometer in the 2h range 5–40�
using an Al sample holder. RR was performed on a Renishaw system
2000 spectrometer with a 782 nm diode laser. The system is equipped
with a modified BH2-UMA Olympus optical microscope and a
Zeiss · 60 water immersion objective to enable targeting at the inter-
face. Power at the sample was 2–3 mW with a 1 lm laser spot size
and the laser exposure for each scan was 10 s. The spectrum of
b-haematin was averaged from 10 spectra recorded across the inter-
face and smoothed using a Savitsky–Golay smoothing function
(5-points).

2.3. Quantitation of b-haematin formation in the presence of lipids
Quantitation was carried out by centrifugation of the reaction mix-

ture to collect the solid, followed by agitation of the pellet in a buffered
aqueous solution containing 50% acetone and 5% pyridine at pH 7.5.
Colorimetric measurement was performed at 405 nm to determine the
concentration of unconverted Fe(III)PPIX. This is a modification of a
recently developed assay [17]. The remaining pellet was confirmed to
be free of unreacted Fe(III)PPIX by exposure to 0.1 M NaHCO3

(pH 9.1) and methanol, neither of which dissolved significant quanti-
ties of Fe(III)PPIX from the pellet as judged by UV–Vis spectroscopy.
These solutions are known to dissolve Fe(III)PPIX, but not b-haema-
tin [18].

2.4. Molecular dynamics calculations
The simulation was performed using the CHARMM 27 [19] force-

field with parameters for haem (Fe(II)PPIX) adjusted for the Fe(III)–
porphyrin bonds. The geometries produced by molecular mechanics
were compared to those obtained for a haematin mimic similar to that
used by Oda et al. [20], where the Fe(III) within the porphyrin is
axially associated to a single water molecule geometrically optimized
using unrestricted hybrid density functional theory (DFT) from the
Gaussian 98 package [21]. The DFT calculations were carried out
using the Becke three-parameter hybrid exchange functional with
the Lee–Yang–Parr correlation functional (B3LYP) method [22]. Here
the LanL2D2 pseudopotential was used to treat the iron core
electrons while the electrons within the mimic were optimized with
the 6-31 G(d) basis set. All MD simulations reported were run using
the SHAKE algorithm [23] and Ewald summation. The van der Waals
and Coulombic interactions were decreased smoothly to zero between
14 Å and 12 Å using switching functions applied on a group-by-group
basis [24]. The vacuum dynamics were carried out using a micro-
canonical ensemble (NVE) at 300 K while employing the Verlet
algorithm. Whereas the solution MD simulation was carried using
an isothermal–isobaric ensemble (NPT) where the pressure and tem-
perature were kept constant (P = 1 bar and T = 300 K) using the
Langevin Piston method [25]. The TIP3P water model [26] as imple-
mented in CHARMM was used with periodic boundary conditions
for all solution simulations. The hematin dimers were immersed in
simulation boxes of 4030 water molecules with solution densities of
1.013 g/cm3.
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3. Results and discussion

A major problem with previous in vitro investigations of b-

haematin formation under physiologically relevant conditions

is that the entire sample of Fe(III)PPIX is introduced directly

into an acidic aqueous environment at the beginning of the

reaction. This results in immediate precipitation of amorphous

Fe(III)PPIX. If this occurs, the solid can convert to b-haema-

tin only slowly, probably by dissolution and re-precipitation

[27]. As Fe(III)PPIX is released in a continuous process

in vivo and large quantities of amorphous Fe(III)PPIX are

not observed in Hz forming organisms, such a model is unre-

alistic. In order to investigate the possible role of the lipid/

water interface in Hz formation we have developed a simple,

but more appropriate model system. As an initial very simple

test we used octanol/water with Fe(III)PPIX introduced close

to the interface of the two liquids. An infrared spectrum of

the product was recorded immediately after 30 min incubation.

This clearly demonstrates production of b-haematin (Fig. 1A).

Scanning electron microscopy (SEM) of this product revealed
Fig. 2. SEM of (A) Hz extracted from P. falciparum and (B) b-
haematin formed near the interface of octanol and water under
conditions described for spectrum (ii) in Fig. 1A. Arrows point to
examples of (i) larger and (ii) smaller crystals that are essentially
identical in size and shape in both samples. Numerous other similar
crystals can be observed in the SEM. The large white scale bar
represents 1lm.
crystals almost identical to those isolated from P. falciparum

(Fig. 2).

When octanol was substituted with pentanol, the process

also proceeded efficiently. Effects of conditions on this system

were then investigated. If the pH was altered to 5.5 or 4.8 (the

latter being the most recently estimated pH of the parasite FV

[28]) the product was still obtained, but no b-haematin was

formed at pH 6 or 6.5 as judged by FTIR. This is expected,

as the product cannot form if both haem propionates are

deprotonated since a propionic acid group is required to form

the chain of hydrogen bonds linking the b-haematin dimers in

the crystal. Remaining experiments were conducted at pH 4.8.

Replacement of citrate buffer with MES had no effect on
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Fig. 3. Kinetics and extent of b-haematin formation brought about
with lipids. (A) Formation of b-haematin near the interface of MMG
and water fitted to the equation for a first-order reaction
(k = 0.13 ± 0.02 min�1 corresponding to a half-life of 5.3 min). (B)
Percentage conversion of Fe(III)PPIX to b-haematin after 5 min
incubation at pH 4.8 and 37 �C in the presence of aqueous/lipid layers
of the monoglyceride lipids MMG and MOG; the diglycerides 1,3-
dimyristoylglycerol (DMG) and 1,3-dioleoylglycerol (DOG); the
triglyceride trioleoylglycerol (TOG); the phosphoglycerides 1,2-diol-
eoyl-glycero-3-phosphoethanolamine (DOPE), 1,2-dimyristoyl-gly-
cero-3-phosphocholine (DMPC), 1,2-dioleoyl-glycero-3-phosphocho-
line (DOPC) and 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC);
n-octyl-b-DD-glucopyranoside (OGP) and cholesterol (CHL). All of the
lipids are highly efficient, but MMG and DOPE appear to be especially
active. The triglyceride TOG is least active. DMG and DOG have been
suggested to be present in lipid bodies associated with the FV [14].
Statistical analysis (ANOVA and Tukey’s tests) indicates that only
TOG and OGP are significantly less active than DOPE (P < 0.05).
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formation of the product, demonstrating that the identity of

the buffer plays no role in the process. On the other hand,

when the reaction was conducted in aqueous medium alone,

or pentanol alone, no product was formed, demonstrating

the essential role of the interface (Fig. 1A). Investigation of

different incubation times showed that significant b-haematin

formation occurs within 5 min (Fig. 1A). X-ray powder

diffraction unequivocally shows that this product is indeed b-

haematin (Fig. 1B) and resonance Raman spectroscopy con-

firms that the product is present in situ near the interface

(Fig. 1C).

In order to more closely model the biological system, we

then replaced the alcohol with a solution of the lipid rac 1-

monomyristoylglycerol (MMG). This too produces b-haema-

tin (Fig. 1A). In further experiments the kinetics of the process

were investigated in the presence of MMG and the percentage

b-haematin formation after 5 min incubation in the presence of

MMG and a further 10 lipids was measured (Fig. 3). These

experiments definitively demonstrate that b-haematin forma-

tion in such systems occurs under physiologically relevant con-

ditions at a rate sufficient to account for Hz formation in vivo.

Molecular dynamics (MD) simulations in vacuum show that

when two H2O–Fe(III)PPIX molecules interact, they rapidly

form an intermolecular precursor of the b-haematin dimer

(Fig. 4A). In this precursor the propionate group of the one

Fe(III)PPIX interacts with the Fe(III) centre of the other

and vice versa. Conversion of this precursor to the b-haematin

dimer requires only a ligand exchange process with bond for-
Fig. 4. (A) Molecular dynamics simulation of the interaction of two H2O–F
dynamics were started with the molecules placed in a back to back conform
apart (i). In vacuum, these two molecules rapidly form the b-haematin precur
the propionate groups with Fe(III) and release of H2O is all that is required
were performed in a cube of H2O starting from the b-haematin precursor, t
interact with the solvent molecules (iii). Water molecules are hidden for clarit
occurred after the periods shown on the figure.
mation from the propionate O to Fe(III)and displacement of

H2O from the opposite face of each porphyrin (Fig. 4B). The

b-haematin dimers themselves were found to rapidly form

hydrogen bonds between the protonated propionic acid

groups. However, such interactions are not expected in water

because of competitive hydrogen bonding. MD simulation in

a cube of 4030 explicit water molecules confirmed this, as the

propionate groups in the b-haematin precursor rapidly moved

away from the Fe(III) centres to interact with water molecules

(Fig. 4A). The hydrogen bonding between pairs of b-haematin

dimers is similarly unstable in the presence of water molecules.

These findings indicate that b-haematin formation in aqueous

medium is unlikely.

The simulation provides direct insight into the mechanism of

Hz formation and role of lipids in the process. As a hydropho-

bic Fe(III)PPIX dimer enters the lipid layer, competitive

hydrogen bonding by water molecules weakens. Motions of

the propionate chains can be expected to be considerably faster

than movement of the Fe(III)PPIX molecule as a whole. The

negatively charged propionate group is then drawn to the pos-

itively charged Fe(III) centre before the dimer dissociates in

the hydrophobic medium, producing the b-haematin precursor

shown in Fig. 4. The ligand exchange process will result in re-

lease of water molecules which are probably transferred to the

bulk aqueous phase. This may help to drive the dehydration

process. Finally, hydrogen bonding of the protonated propi-

onic acid groups is strongly favoured in the hydrophobic envi-

ronment of the lipid, beginning the assembly of the Hz crystal.
e(III)PPIX molecules (the protonation state expected at FV pH). The
ation with the propionate and propionic acid groups extended and far
sor (ii). This is enlarged in (B), which illustrates that bond formation of
to convert this precursor to the b-haematin dimer. When the dynamics
he propionate groups quickly moved away from the Fe(III) centres to
y. Total simulation times were 5 ns in each case. No significant changes
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The kinetics shown in Fig. 3 are so fast that if the process of

haemoglobin degradation occurs at a constant rate throughout

the late ring and trophozoite stages of P. falciparum, the

fraction of free Fe(III)PPIX is unlikely to ever exceed 1% of

the total Fe(III)PPIX in the parasite. A further point of inter-

est is that octanol has recently been shown to have lipid-like

qualities at the aqueous interface. This is because the OH

groups of the alcohol hydrogen-bond with water molecules,

resulting in a polar region and a non-polar region more hydro-

phobic than bulk octanol itself where the alkyl chains are par-

tially aligned [29]. This resembles half the bilayer of a lipid

membrane. This ordered layer both in the alcohol and in lipids

may play a role in orienting the Fe(III)PPIX molecules to facil-

itate b-haematin formation, as we found that only traces of

product were formed at the interface of toluene and water

which is likely to have a more abrupt interface in common with

other organic solvents [29]. Interestingly, as recently pointed

out to us by Leiserowitz,1 electron micrographic images of

Hz crystals in malaria parasites are often strikingly aligned,

possible evidence for epitaxial nucleation of Hz at the lipid/

water interface.

Thus, under acidic physiologically realistic conditions, b-

haematin assembles rapidly and spontaneously near long chain

alcohol/water and lipid/water interfaces. The Hz biocrystal

does not therefore require an enzyme or other promoter. This

study however raises a number of interesting questions: What

is the specific lipid environment in which Hz forms in the ma-

laria parasite and what are the lipids involved in this and other

organisms? Does Fe(III)PPIX find its way to the lipid mem-

brane by diffusion, or do specific proteins buffer the free

Fe(III)PPIX concentration or act as chaperones? Do some

membrane proteins in fact inhibit its formation (e.g. erythro-

cyte membranes are known not to support b-haematin forma-

tion) [13]? How do b-haematin inhibiting drugs influence the

process at the interface? The answers to some of these ques-

tions could lead the way to novel antimalarials.
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