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Abstract

Estimating the joint probability density function of a
dataset is a central task in many machine learning
applications. In this work we address the fundamen-
tal problem of kernel bandwidth estimation for vari-
able kernel density estimation in high-dimensional fea-
ture spaces. We derive a variable kernel bandwidth es-
timator by minimizing the leave-one-out entropy ob-
jective function and show that this estimator is capa-
ble of performing estimation in high-dimensional fea-
ture spaces with great success. We compare the perfor-
mance of this estimator to state-of-the art maximum-
likelihood estimators on a number of representative
high-dimensional machine learning tasks and show that
the newly introduced minimum leave-one-out entropy
estimator performs optimally on a number of high-
dimensional datasets considered.

Introduction

With the advent of the internet and advances in computing
power, the collection of very large high-dimensional datasets
has become feasible — understanding and modelling high-
dimensional data has thus become a crucial activity, espe-
cially in the field of machine learning. Since non-parametric
density estimators are data-driven and do not require or
impose a pre-defined probability density function on data,
they are very powerful tools for probabilistic data modelling
and analysis. Conventional non-parametric density estima-
tion methods, however, originated from the field of statistics
and were not originally intended to perform density estima-
tion in high-dimensional features spaces - as is often en-
countered in real-world machine learning tasks. (Scott and
Sain 2005) states, for example, that kernel density estima-
tion of a full density function is only feasible up to six di-
mensions. We therefore define density estimation tasks with
dimensionalities of 10 and higher as high-dimensional; and
we address the the fundamental problem of non-parametric
density estimation in high-dimensional feature spaces in this
study.

The first notable attempt to free discriminant analysis
from strict distributional assumptions was made in 1951 by
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(Fix and Hodges 1951; Silverman 1986) with the introduc-
tion of the naive estimator. Since then, many approaches
to non-parametric density estimation have been developed,
most notably: kernel density estimators (KDEs) (Whittle
1958), k-nearest-neighbour density estimators (Loftsgaar-
den and Quesenberry 1965), variable KDEs (Breiman et al.
1977), projection pursuit density estimators (Friedman et
al. 1984), mixture model density estimators (Dempster et
al. 1977; Redner and Walker 1984) and Bayesian networks
(Webb 2003; Heckerman 2008).

Recent advances in machine learning have shown that
maximum-likelihood (ML) kernel density estimation holds
much promise for estimating non-parametric density func-
tions in high-dimensional spaces. Two notable contribu-
tions are the Maximum Leave-one-out Likelihood (MLL)
kernel bandwidth estimator (Barnard 2010) and the Maxi-
mum Likelihood Leave-One-Out (ML-LOO) kernel band-
width estimator (Leiva-Murillo and Rodriguez 2012). Both
estimators were independently derived from the ML objec-
tive function with the only differences being the simplifying
assumptions made in their derivations to limit the complex-
ity of the bandwidth optimisation problem.

In particular, the ML-LOO estimator constrains the num-
ber of free parameters that need to be estimated in the band-
width optimisation problem by estimating an identical full-
covariance or spherical bandwidth matrix for all kernels. The
MLL estimator by Barnard assumes that the density func-
tion changes slowly throughout feature space, which limits
the complexity of the objective function being optimised.
Specifically, when the kernel bandwidth H; for data point
x; 1s estimated, it is assumed that the kernel bandwidths of
the remaining NV — 1 kernels are equal to H;. Therefore, the
optimisation of the bandwidth H; does not require the esti-
mation of the bandwidths of the remaining N-1 kernels.

We address the problem of kernel bandwidth estimation
for kernel density estimation in this work by deriving a ker-
nel bandwidth estimation technique from the ML framework
without the simplifications imposed by the MLL and ML-
LOO estimators. This allows us to compare the performance
of this more general ML estimator to the MLL and ML-LOO
estimators on a number of representative machine learning
tasks to gain a better understanding of the practical implica-
tions of the simplifying assumptions made in the derivations
of the MLL and ML-LOO estimators on real world (RW)



density estimation tasks.

In Section 2 we define the classical ML kernel bandwidth
estimation problem and derive a novel kernel bandwidth es-
timator from the ML leave-one-out objective function. We
also show how the MLL and ML-LOO estimators can be de-
rived from the same theoretical framework. In Section 3 we
describe the experimental design of our comparative simu-
lation studies and in Section 4 we present the results of our
simulations. Finally, we make concluding remarks and sug-
gest future work in Section 5.

Maximum-likelihood Kernel Density
Estimation

KDEs estimate the probability density function of a D-
dimensional dataset X, consisting of N independent and
identically distributed samples x1, ..., x;y with the sum

1 N
pu () NZKH]. (xi — x,|H;) (1
j=1

where Ky, (x; — x;|H;) is the kernel smoothing function
fitted over each data point x; with bandwidth matrix H; that
describes the variation of the kernel function.

This formulation shows that the density estimated with the
KDE is non-parametric, since no parametric distribution is
imposed on the estimate; instead the estimated distribution
is defined by the sum of the kernel functions centred on the
data points. KDEs thus require the selection of two design
parameters, namely the parametric form of the kernel func-
tion and the bandwidth matrix. It has been shown that the
efficiencies of kernels with respect to the mean squared er-
ror between the true and estimated distribution do not differ
significantly and that the choice of kernel function should
rather be based on the mathematical properties of the ker-
nel function, since the estimated density function inherits
the smoothness properties of the kernel function (Silverman,
1986). The Gaussian kernel is therefore often selected in
practice for its smoothness properties, such as continuity and
differentiability. This thus leaves the estimation of the kernel
bandwidth as the only parameter to be estimated.

The ML criterion for kernel density estimation is typi-
cally defined as the log-likelihood function and has an in-
herent shortcoming since the estimated log-likelihood func-
tion tends to infinity as the bandwidths of the kernel func-
tions centred on each data point tend to zero. This thus leads
to a trivial degenerate solution when kernel bandwidths are
estimated by optimising the ML objective function. To ad-
dress this shortcoming the leave-one-out KDE estimate is
used. The leave-one-out estimate removes the effect of sam-
ple x; from the KDE sum when estimating the likelihood
of x;; optimising the leave-one-out ML objective function
with respect to the kernel bandwidth matrix will thus pre-
vent the trivial solution of the ML objective function where
l1(X) = oo when H; = 0. The leave-one-out ML objective
function is thus defined as

1
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where H is used to denote the dependency of the log-
likelihood on the kernel bandwidths H;.

Maximum-likelihood Kernel Bandwidth
Estimation

KDE bandwidths that optimise the leave-one-out ML objec-
tive function can be estimated by finding the partial deriva-
tive of the leave-one-out ML objective function in Eq. 2 with
respect to each bandwidth Hy,
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The bandwidth Hj, can thus be estimated by setting this
partial derivative to zero and solving for Hy.

MLE kernel bandwidth estimation Based on the formu-
lation of the leave-one-out ML objective function in Eq.
3 we derive a new kernel bandwidth estimator named the
minimum leave-one-out entropy (MLE) estimator. (To our
knowledge, this is the first attempt where partial derivatives
are used to derive variable bandwidths in a closed form so-
lution.)

Since the partial derivative in Eq. 3 will only be non-zero
for j=k, we simplify this equation to give the partial deriva-
tive of the MLE objective function
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If we restrict the MLE estimator to multivariate Gaussian
kernels with diagonal covariance matrices, the partial deriva-
tive of the kernel function with respect to the diagonal band-
width Hy, in dimension d can be derived with the product
rule !

o) (5)

where Hy(qq) = hid and hyq is the kernel bandwidth in
dimension d centred on data point x. If we substitute the
partial derivative of this kernel function into Eq. 4, set the
result to zero and solve for H; we obtain the MLE diagonal
covariance bandwidth estimate
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MLL Kkernel bandwidth estimation A key insight ob-
served by (Gangopadhyay and Cheung, 2002) and by
(Barnard, 2010) is that if the density function changes rel-
atively slowly throughout feature space, the optimal ker-
nel bandwidths will also change slowly throughout feature
space. If it is assumed that the density function changes
slowly throughout feature space, a simplification can be

"We provide complete proofs for the MLE diagonal and full co-
variance, MLL and ML-LOO bandwidth estimators as well as ex-
perimental results on convergence of the MLE bandwidhts in (van
der Walt 2014).



made by assuming that the bandwidths of kernels in the
neighbourhood of a kernel are the same as that of the ker-
nel. Thus, when the bandwidth H; is being estimated, it is
assumed that all other bandwidths are equal to H;. Barnard
used this assumption to reduce the complexity of the the
leave-one-out kernel density estimate and derived a diagonal
covariance variable multivariate Gaussian kernel banwidth
estimator as

3 K, (xi = %[ Hy) (wia — 2a)”
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for each dimension d. This diagonal covariance bandwidth
estimator is called the MLL estimator.

ML-LOO bandwidth estimation (Leiva-Murillo and
Rodriguez 2012) also simplified the bandwidth optimisation
problem for ML kernel bandwidth estimation by estimating
an identical spherical or full-covariance bandwidth matrix
for all kernels — thus limiting the number parameters to be
optimised to a single bandwidth or single covariance matrix.
If the definition of the leave-one-out KDE for an identical
spherical Guassian bandwidth is substituted into Eq. 2, the
ML-LOO spherical bandwidth, h, can be solved as 2
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Similarly, if the definition of the leave-one-out KDE for

an identical full covariance Gaussian bandwidth is substi-

tuted into Eq. 2, the ML-LOO full covariance bandwidth
matrix, H, can be solved as
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Global MLE bandwidth estimation Motivated by the
bias-variance trade-off, we derive a new estimator (named
the global MLE estimator) by defining the leave-one-out
kernel density estimate for a diagonal covariance bandwidth
matrix, Hg, that is identical for all kernels. If we substitute
this definition of the leave-one-out KDE into Eq. 2, H, can
be solved as
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for each dimension d.

Experimental Design

In this section we describe the experimental design to com-
pare and investigate the performance of the MLE, global
MLE, MLL, spherical ML-LOO and full covariance ML-
LOO estimators on a number of representative RW machine
learning datasets.

?Leiva-Murillo and Rodriguez further simplify this expression
by substituting >, K (xi — x;|h) = (N — L)pra(—s) (x:)
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Table 1: RW dataset summary

| Dataset | C D Ntr  Nte |
Letter 26 16 16000 4000
Segmentation 7 18 2100 210
Landsat 6 36 4435 2000
Optdigits 10 64 3823 1797
Isolet 26 617 6238 1559
Datasets

We select five RW datasets (with independent train and test
sets) from the UCI Machine Learning Repository (Lichman
2013) for the purpose of simulation studies. These data sets
are selected to have relatively high dimensionalities, since
high-dimensions are typical of many real-world machine
learning tasks. The selected datasets are the Letter, Segmen-
tation, Landsat, Optdigits and Isolet datasets. We summarise
these datasets in Table 1 and denote the number of classes
with “C”, the dimensionality with “D”, the number of train-
ing samples with “Ntr”” and the number of test samples with
“Nte”. We refer the reader to (Lichman 2013) for a more
detailed description of these datasets.

Data pre-processing

Principal Component Analysis (PCA) is performed on all
RW datasets as a pre-processing step prior to density esti-
mation. PCA is used to reduce the dimensionality of datasets
by performing a linear transformation that re-aligns the fea-
ture axes to the directions of most variation, thus minimiz-
ing the variance orthogonal to the projection. Features with
smallest eigenvalues (or variance in the transformed feature
space) may thus be disregarded for the purpose of dimen-
sionality reduction. PCA also ensures that the features of
the transformed feature space are orthogonal, thus ensuring
the features are decorrelated. We retain only the transformed
features with eigenvalues larger than 1% of the eigenvalue
of the principal component. > We perform the PCA transfor-
mation on each class individually, since it has been shown
(Barnard, 2010) that this approach is more effective in com-
pressing features than when all classes are transformed si-
multaneously. We denote this pre-processing step for dimen-
sionality reduction as "PCA1”.

A more subtle implication of PCA is that it serves as a
form of bandwidth regularisation for ML kernel bandwidth
estimators, which is a crucial task for kernel density estima-
tion in high-dimensional spaces. Because of the formulation
of the ML objective function, an infinite likelihood score is
obtained when two data points have corresponding values in
any dimension. When, for example, a Gaussian kernel is fit-
ted over a training data point, and a test point has the same
value in any of the dimensions, the bandwidth that will max-
imise the likelihood score in the dimension with correspond-

3The more conventional approach is to keep the features with
largest eigenvalues such that their eigenvalues sum to 95% of the
total of all eigenvalues. This approach attempts to capture 95% of
the variance, but fails when, for example, all the features have ap-
proximately the same eigenvalues.



ing values will be 0. This phenomenon becomes more prob-
lematic as dimensionality increases, since the probability of
having two observations with the same value in any dimen-
sion increases significantly, thus leading to more degenerate
kernel bandwidths. PCA reduces the probability of identical
values in a dimension since the linear transformation of a
new feature is the weighted sum of the values of all dimen-
sions in the original feature space. Two data points thus need
to satisfy the same linear equation to have the same value in
a transformed dimension.

Kernel bandwidth initialisation

It was shown in (van der Walt and Barnard 2013) that the
Silverman rule-of-thumb bandwidth estimator performed re-
liably on a number of machine learning tasks. Based on this
empirical evidence and the intuitive theoretical motivation
that the Silverman estimator optimises the asymptotic mean
integrated squared error (assuming a Gaussian reference dis-
tribution), we make use of the Silverman bandwidth estima-
tor for bandwidth initialisation.

Since the Silverman estimator estimates a unique band-
width per dimension, we initialise the diagonal MLE and
MLL bandwidths of each kernel with the Silverman band-
widths for each dimension. Similarly, the full covariance
ML-LOO bandwidth matrix and global MLE bandwidth ma-
trix is initialised with a diagonal bandwidth matrix consist-
ing of the Silverman bandwidths. The spherical ML-LOO
bandwidth is initialised with the average of the Silverman
bandwidths.

Kernel bandwidth regularisation

In practice the optimal ML kernel bandwidth, h;4, centred
on data point x; in dimension d, is degenerate under cer-
tain circumstances and tends to 0. Pre-processing with PCA
reduces the number of such occurrences significantly as ex-
plained earlier. As a further measure of regularisation we
make use of the theoretical lower bound of the optimal band-
width for the ML criterion as derived in (Leiva-Murillo and
Rodriguez 2012). The lower bound states that the minimum
optimal bandwidth, h?,, is equal to the squared Euclidean
distance to the nearest-neighbour of x;. In practice it often
happens that two samples have the same values in a certain
dimension, thus making the nearest-neighbour distance 0.
We set the lower bound of a bandwidth in each dimension
to the nearest data point with a non-zero distance. For all es-
timators we validate that all bandwidths are above their re-
spective lower bounds, after each iteration of the bandwidth
optimisation procedure. The bandwidths that are below their
respective lower bounds after an iteration are thus replaced
by the corresponding lower bound value.

Performance evaluation

The RW datasets in Table 1 all have independent test sets.
We therefore perform 10-fold cross-validation on each class
specific training set to find the optimal number of training it-
erations for each class conditional density function. We then
calculate the likelihood scores of the test samples for each
class to estimate the sample entropy per class.
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The optimal kernel bandwidth is obtained with a direct
approach where the right-hand side of each bandwidth esti-
mation equation is initialised with the Silverman bandwidth,
the left hand side is updated, and the updated bandwidth is
then substituted into the right-hand side again. This process
is repeated for 10 iterations on each training set.

Experimental setup

We compare the performance of the MLE, global MLE,
MLL, spherical ML-LOO and full covariance ML-LOO es-
timators on the Letter, Segmentation, Landsat, Optdigits and
Isolet datasets summarised in Table 1. PCA1 class-specific
transformations are performed on each class for all datasets
and the entropy score of each estimator is calculated per
class.

Results

In this section we present the results of the comparative
simulation study described in the experimental design sec-
tion. We denote the class number with “C”, the number of
principal components with “K”, the number of samples in
the class with “NC”, the MLE estimator with “MLE”, the
global MLE estimator with “MLE(g)”, the MLL estimator
with “MLL”, the spherical covariance ML-LOO estimator
with “ML-LOO(s)” and the full covariance ML-LOO esti-
mator with “ML-LOO(f)”. We make use of colour scales to
visually represent the relative performance of the estimators,
where green indicates the lowest entropy for a specific class
and red the highest entropy for a specific class.

The Letter dataset results in Table 2 show that the ML-
LOO(f) estimator performs optimally on all classes except
class 9, while the MLL and ML-LOOC(s) estimator under-
perform on most classes.

The Segmentation dataset results in Table 3 show that
the MLE estimator performs optimally on all classes ex-
cept classes 2 and 7, and the MLL estimator performs com-
petitively on the same classes. The ML-LOO(f) estimator
performs optimally on classes 2 and 7, underperforms on
classes 3 and 4 and performs moderately on the remaining
classes. The MLE(g) and ML-LOO(s) estimators underper-
form on four classes, and perform moderately on the remain-
ing classes.

The Landsat dataset results in Table 4 show that the ML-
LOO(f) estimator performs optimally and near optimally
on all classes except class 2 and the global MLE estima-
tor performs competitively on most classes except class 2.
The MLE estimator performs optimally on class 2 and mod-
erately on the remaining classes, while the MLL estimator
performs competitively on class 2 and moderately on the re-
maining classes. The ML-LOOC(s) clearly underperforms on
all classes.

The Optdigits dataset results in Table 5 show that the
MLE(g) estimator performs optimally on most classes. The
MLE and MLL estimators perform optimally on class 7
and perform moderately on the remaining classes. The ML-
LOO(s) estimator performs near optimally and optimally on
classes 3 and 5, moderately on classes 2 and 8 and underper-
forms on the remaining classes. The ML-LOO(f) estimator



Table 2: Letter test entropy results (class-specific PCA1)

C K | NC MLE(g) MLE MLL ML- ML-
1 15 | 789 9.2873 | 10.2996 10.1448
2 | 15| 766 || 11.8521 | 12.4504
3|15 736 || 109114 | 10.9152
4 14 | 805 10.6806 | 10.8480 11.1240
5 15 | 768 9.0948 | 10.0307 9.8392
6 13 | 775 9.3735 9.8056 10.0040
7 15 | 773 11.6837 | 12.4585 12.3793
8 14 | 734 10.6712 | 10.6509
9 13 | 755 8.7703 7.4315
10 | 13 | 747 8.0048 8.2247
11 | 15 | 739 10.1285 | 10.7803
12 | 12 | 761 6.9545 7.0843
13 | 14 | 792 8.3489 8.4041
14 | 14 | 783 9.3522 8.7992
15| 16 | 753 12.7908 | 13.0909 13.7332
16 | 15 | 803 9.9907 | 11.1816 10.8242
17 | 15 | 783 10.8606 | 11.8567 11.8571
18 | 15 | 758 10.9078 | 12.1141 11.3758
19 | 15 | 748 9.0280 9.8751 9.7640
20 | 13 | 796 7.8998 8.1263
21 | 13 | 813 8.8809 9.0425
22 | 14 | 764 || 10.0613 | 10.3505
23 | 15 | 752 || 10.5571 | 10.9732
24 | 15 | 787 11.0415 | 11.1224
25 | 14 | 786 || 87009 | 9.3734
26 | 15 | 734 10.2744 | 10.0557 | 10.8011

Table 3: Segmentation test entropy results (class-specific

PCA1)
C | K | NC MLE(g) MLE MLL ML- ML-

LOO(f) | LOOC(s)

1 13 | 330 14.7612 | 14.3396 | 14.5128 | 15.2068
2 | 11 | 330 || 13.3975 | 13.5591 12.9305 | 13.8543
3112 2.7401 3.5781 | 10.5969 9.6920
4 |11 | 330 15.4156 7.7225 | 11.9012 13.2768
5 111 | 330 15.4297 6.7261 7.2938
6 | 11 | 330 11.2927 | 10.7688 | 11.0891
7 110 | 330 7.1770 6.8176 6.8371

Table 4: Landsat test entropy results (class-specific PCA1)

C | K | NC MLE(g) MLE MLL ML- ML-
LOO(f) | LOO(s)

1 |8 | 1533 || 10.6246 | 10.6571 | 10.6958 | 10.5527

2 |10 | 703 11.4557 | 11.2188 | 11.2724 | 11.3094

3 | 14 | 1358 || 16.6442 | 16.7766 | 17.1863 | 16.4641

4 | 13 | 626 14.6303 | 14.6583 | 14.7188 | 14.6150

5| 11 | 707 14.1853 | 14.6757 | 14.6641 | 14.2129

6 | 11 | 1508 || 14.2989 | 14.2268 | 14.5458 | 14.2334

performs optimally on class 10, performs moderately on four
classes and underperforms on the remaining classes.

The Isolet dataset results in Table 6 show that the MLE(g)
estimator performs optimally on 20 of the 26 classes, while
the MLE estimator performs optimally on five classes and
performed optimally tied with the MLE(g) estimator on
class 14. The MLL estimator performs optimally on class 9
and performs optimally with the MLE estimator on classes
3,20 and 26. The ML-LOO(f) estimator performs optimally
with the MLL estimator on class 9, while the ML-LOOC(s)
estimator consistently underperforms on all classes.

In general, we have observed that the ML-LOO(f) esti-
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Table 5 Optdigits test entropy results (class-specific PCA1)

C NC || MLE(g) MLE MLL ML- ML-
LOO(f) | LOO(s)

1 | 46 | 554 || 52.7315 | 54.9642 | 54.9642 | 55.0121

2 |36 | 571 || 37.8930 | 39.9837 | 39.9837

3 | 41 | 557 || 55.1442 | 60.8972 | 60.8972

4 |50 | 572 || 63.7679 | 67.9808 | 67.9808

5 |39 | 568 || 45.1030 | 45.1030 | 45.1030

6 | 46 | 558 || 55.7444 | 58.8748 | 58.8748 | 58.9782

7 | 37 | 558 || 46.8292 | 46.7069 | 46.7069 | 46.9650

8 | 41 | 566 || 52.9752 | 55.9436 | 55.9436 55.6049

9 |50 | 554 || 61.2910 | 63.9965 | 63.9965 | 64.2079

10 | 43 | 562 || 57.9241 | 56.2229 | 56.2229 | 51.2123

Table 6: Isolet test entropy results (class-specific PCA1)

C [ K NC MLE(g) MLE MLL ML- ML-
Il el el W
1 300 | 189.0759 | 191.2731 | 190.8883 | 190.8883
2 | 107 | 300 || 211.6703 | 210.8217 | 212.5131 | 212.5131
3 198 | 300 || 203.3099 | 202.9658 | 202.9658 | 202.9675
4 | 101 | 300 | 205.9877 | 209.6424 | 207.7975 | 207.8165
5 103 | 300 | 213.3857 | 215.8229 | 218.8905 | 218.9028
6 | 100 | 300 | 199.3268 | 199.7004 | 200.6295 | 200.6515
7 |90 | 300 | 186.8359 | 189.5903 | 188.2592 | 188.2732
8 | 88 | 300 || 180.7441 | 182.4256 | 181.7845 | 182.0967
9 | 108 | 300 || 230.2376 | 236.3707 | 226.6773 | 226.6732
10 | 85 | 300 | 182.6589 | 184.5528 | 184.5528 | 184.6028
11 | 89 | 300 | 189.1564 | 190.9196 | 190.9196 | 190.9604
12 | 118 | 300 | 241.4164 | 252.6089 | 249.7367 | 250.0967
13 | 123 | 300 | 244.3422 | 248.1532 | 249.8309 | 249.8319
14 | 119 | 300 | 239.3669 | 239.3669 | 261.6026 | 241.8353
15 | 103 | 300 | 209.7407 | 215.6002 | 213.0124 | 213.1697
16 | 104 | 300 | 206.8094 | 208.4278 | 207.3090 | 207.3090
17 | 108 | 300 | 222.6612 | 227.7650 | 227.7650 | 227.7496
18 | 106 | 300 | 217.0238 | 224.1280 | 221.0936 | 221.2660
19 | 96 | 300 | 199.3421 | 201.4060 | 203.1794 | 203.7217
20 | 100 | 300 || 203.0767 | 202.6541 | 202.6541 | 202.6541
21 | 121 | 300 | 239.3333 | 241.4055 | 244.0612 | 244.1695
22 | 113 | 300 || 228.0789 | 226.9123 | 230.1929 | 230.1947
23 | 104 | 300 | 207.1714 | 208.6037 | 209.0199 | 209.0204
24192 | 300 | 194.4274 | 199.8320 | 197.9024 | 197.9059
25 | 109 | 300 | 218.3860 | 219.9983 | 220.8091 | 221.0781
26 | 100 | 300 || 206.8940 | 206.6910 | 206.6910 | 206.7172

mator performed optimally on most classes of the Letter and
Landsat datasets; the MLE estimator performed optimally
on most classes of the Segmentation dataset and the MLE(g)
estimator performed optimally on most classes of the Opt-
digits and Isolet datasets.

We also observed that the MLE and MLL estimators ex-
hibited very similar relative performance behaviour and that
the MLE generally performed better. If we compare the
MLE bandwidth estimator in Eq. 6 and the MLL bandwidth
estimator in Eq. 7 we find that these estimators are identical
except that the numerator and denominator of the MLE esti-
mation equation is normalised with the leave-one-out KDE
likelihood score of each sample x;. This explains the sim-
ilar performance behaviour of these estimators and shows
that this normalisation factor leads to an improvement in
performance. This term may be regarded as a regularisa-
tion term since the effect on the estimated bandwidth of data
points that fall within dense regions is reduced while the ef-
fect of data points that lie in lower density regions are in-
creased. To illustrate the regularisation effect, consider two
univariate data points, x; and xs, that lie very close to each
other. Both x; and x> will have relatively high density val-



ues for pj(—1y(21) andpy(—g)(22), since they are close in
feature space and will increase each other’s density. If the
bandwidth,hq, is estimated for the kernel centred on x;, the
distance (21 — 22)? will be very small, but since the value of
Pr(—1)(w2) will be large, the contribution of (21 — 72)? to
hy will be reduced, thus preventing h; from becoming too
small.

The ML-LOO(s) estimator estimates the single bandwidth
for all dimensions and all kernels, and the general under-
performance of this estimator compared to the global MLE
estimator shows that local scale variations should differ be-
tween dimensions.

The MLE(g) estimator estimates an identical covariance
bandwidth matrix for all kernels, and the superior perfor-
mance of this estimator on the Optdigits and Isolet datasets
show that these datasets require scale variations between
features but no not require drastic local scale variations
within dimensions. We derive this conclusion from the fact
that the MLE and MLL estimators are capable of modelling
drastic changes in local scale variation within features (since
the bandwidth is adapted for each kernel in each dimension),
and since the MLE(g) estimator generally outperforms these
estimators on these two datasets, it shows an interesting case
of the bias-variance trade-off: having fewer parameters, the
MLE(g) estimator is less flexible than the MLE and MLL
estimators; however, those parameters can be estimated with
greater reliability, leading to the best performance in many
cases. It is important to note that the MLE(g) estimator can
model local scale variations to some extent within features,
since a kernel function is placed on each data point, and if
the locations of data points within a dimension vary the esti-
mated density function for the dimension will also vary ac-
cording to the locations of the data points, thus capturing
local scale variations. However, the bandwidths placed on
each data point are identical within a dimension and there-
fore drastic scale variations cannot be modelled accurately.
Similarly, the MLE(g) estimator can also model correlation
between features to some extent since a kernel is placed on
each data point, and if data points between features vary in
the same direction the correlation between these features
will be captured by the density of the kernels placed on
these data points. However, since the MLE(g) estimator has
a diagonal covariance bandwidth matrix, local variations are
modelled parallel to the feature axes. Thus if local variations
are not parallel to the feature axes, the ML-LOO(f) estima-
tor will perform better since the ML-LOO(f) estimator can
model local density that is not parallel to the feature axes, by
making use of correlation coefficients in the full covariance
bandwidth matrix.

The ML-LOO(f) estimator estimates an identical full co-
variance matrix for all kernels, and the superior performance
of this estimator on the Letter and Landsat datasets show
that these datasets require a density estimate that can model
local variations that are not necessarily parallel to the fea-
ture axes. This conclusion is derived from the fact that the
ML-LOO({) generally outperforms the MLE(g) estimator on
these two datasets, and since both estimators estimate an
identical bandwidth matrix for each kernel, the only differ-
ence is that the ML-LOO(Y) has a full covariance bandwidth
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matrix that models local correlation in the density estimate
by making use of correlation coefficients in the kernel band-
width matrix.

Conclusion and future work

We have shown that none of the ML estimators investigated
performed optimally on all tasks, and based on theoretical
motivations confirmed with empirical results it is clear that
the optimal estimator depends on the degree of scale vari-
ation between features and the degree of changes in scale
variation with features.

The results show that the full covariance ML-LOO and
global MLE estimators (which estimate an identical full and
diagonal covariance matrix respectively for each kernel) per-
formed optimally on four of the five datasets investigated,
while the MLE estimator (which estimates a unique band-
width for each kernel) performed optimally on only one
dataset. This is an interesting case of the bias-variance trade-
off: having fewer parameters, the full covariance ML-LOO
and global MLE estimators are less flexible than the MLE
and MLL estimators; however, those parameters can be es-
timated with greater reliability, leading to the best perfor-
mance in many cases.

From the theoretical and empirical results in this work it
is clear that the optimal estimator should somehow function
like the full covariance ML-LOO estimator in regions with
low spatial variability, and must function like the MLE esti-
mator and be able to adapt bandwidths in regions with high
spatial variability, especially for outliers.

We therefore believe that it would be interesting to inves-
tigate a hybrid kernel bandwidth estimator by first detecting
and removing outliers. Clustering can then be performed on
the remaining data and the full covariance ML-LOO band-
width estimator can be used to estimate a unique full co-
variance kernel bandwidth for each cluster - each kernel will
thus make use of the full covariance bandwidth matrix of
the cluster to which it is assigned. The MLE estimator can
then be used to estimate a unique bandwidth for each outlier;
since the MLE estimator can model scale variations, this will
ensure that outliers have sufficiently wide bandwidths. This
proposed hybrid approach will thus generally function like
the full covariance ML-LOO estimator in the clustered re-
gions and has the added ability to change the direction of
local scale variations between clusters. This estimator will
also be capable of making the bandwidths of kernel function
centred on outliers sufficiently wide. We therefore propose
to implement this hybrid ML kernel bandwidth estimator in
future work and perform a comparative study between this
approach, the MLE, full covariance ML-LOO and the first
hybrid approach proposed above.

In summary, the results of this investigation show that the
contribution of the global MLE and MLE estimators are ex-
tremely valuable since they provide two alternative kernel
bandwidth estimators to employ in high-dimensional feature
spaces.
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