
Variable Kernel Density Estimation
in High-Dimensional Feature Spaces

Christiaan M. van der Walt a,b Etienne Barnard b
a Modelling and Digital Science, CSIR, Pretoria, South Africa

cvdwalt@csir.co.za
b Multilingual Speech Technologies Group, North-West University, Vanderbijlpark, South Africa

etienne.barnard@nwu.ac.za

Abstract

Estimating the joint probability density function of a
dataset is a central task in many machine learning
applications. In this work we address the fundamen-
tal problem of kernel bandwidth estimation for vari-
able kernel density estimation in high-dimensional fea-
ture spaces. We derive a variable kernel bandwidth es-
timator by minimizing the leave-one-out entropy ob-
jective function and show that this estimator is capa-
ble of performing estimation in high-dimensional fea-
ture spaces with great success. We compare the perfor-
mance of this estimator to state-of-the art maximum-
likelihood estimators on a number of representative
high-dimensional machine learning tasks and show that
the newly introduced minimum leave-one-out entropy
estimator performs optimally on a number of high-
dimensional datasets considered.

Introduction
With the advent of the internet and advances in computing
power, the collection of very large high-dimensional datasets
has become feasible – understanding and modelling high-
dimensional data has thus become a crucial activity, espe-
cially in the field of machine learning. Since non-parametric
density estimators are data-driven and do not require or
impose a pre-defined probability density function on data,
they are very powerful tools for probabilistic data modelling
and analysis. Conventional non-parametric density estima-
tion methods, however, originated from the field of statistics
and were not originally intended to perform density estima-
tion in high-dimensional features spaces - as is often en-
countered in real-world machine learning tasks. (Scott and
Sain 2005) states, for example, that kernel density estima-
tion of a full density function is only feasible up to six di-
mensions. We therefore define density estimation tasks with
dimensionalities of 10 and higher as high-dimensional; and
we address the the fundamental problem of non-parametric
density estimation in high-dimensional feature spaces in this
study.

The first notable attempt to free discriminant analysis
from strict distributional assumptions was made in 1951 by

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Fix and Hodges 1951; Silverman 1986) with the introduc-
tion of the naı̈ve estimator. Since then, many approaches
to non-parametric density estimation have been developed,
most notably: kernel density estimators (KDEs) (Whittle
1958), k-nearest-neighbour density estimators (Loftsgaar-
den and Quesenberry 1965), variable KDEs (Breiman et al.
1977), projection pursuit density estimators (Friedman et
al. 1984), mixture model density estimators (Dempster et
al. 1977; Redner and Walker 1984) and Bayesian networks
(Webb 2003; Heckerman 2008).

Recent advances in machine learning have shown that
maximum-likelihood (ML) kernel density estimation holds
much promise for estimating non-parametric density func-
tions in high-dimensional spaces. Two notable contribu-
tions are the Maximum Leave-one-out Likelihood (MLL)
kernel bandwidth estimator (Barnard 2010) and the Maxi-
mum Likelihood Leave-One-Out (ML-LOO) kernel band-
width estimator (Leiva-Murillo and Rodrı́guez 2012). Both
estimators were independently derived from the ML objec-
tive function with the only differences being the simplifying
assumptions made in their derivations to limit the complex-
ity of the bandwidth optimisation problem.

In particular, the ML-LOO estimator constrains the num-
ber of free parameters that need to be estimated in the band-
width optimisation problem by estimating an identical full-
covariance or spherical bandwidth matrix for all kernels. The
MLL estimator by Barnard assumes that the density func-
tion changes slowly throughout feature space, which limits
the complexity of the objective function being optimised.
Specifically, when the kernel bandwidth Hi for data point
xi is estimated, it is assumed that the kernel bandwidths of
the remaining N − 1 kernels are equal to Hi. Therefore, the
optimisation of the bandwidth Hi does not require the esti-
mation of the bandwidths of the remaining N-1 kernels.

We address the problem of kernel bandwidth estimation
for kernel density estimation in this work by deriving a ker-
nel bandwidth estimation technique from the ML framework
without the simplifications imposed by the MLL and ML-
LOO estimators. This allows us to compare the performance
of this more general ML estimator to the MLL and ML-LOO
estimators on a number of representative machine learning
tasks to gain a better understanding of the practical implica-
tions of the simplifying assumptions made in the derivations
of the MLL and ML-LOO estimators on real world (RW)

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2674



density estimation tasks.
In Section 2 we define the classical ML kernel bandwidth

estimation problem and derive a novel kernel bandwidth es-
timator from the ML leave-one-out objective function. We
also show how the MLL and ML-LOO estimators can be de-
rived from the same theoretical framework. In Section 3 we
describe the experimental design of our comparative simu-
lation studies and in Section 4 we present the results of our
simulations. Finally, we make concluding remarks and sug-
gest future work in Section 5.

Maximum-likelihood Kernel Density
Estimation

KDEs estimate the probability density function of a D-
dimensional dataset X, consisting of N independent and
identically distributed samples x1, ...,xN with the sum

pH(xi) =
1

N

N∑
j=1

KHj
(xi − xj |Hj) (1)

where KHj (xi − xj |Hj) is the kernel smoothing function
fitted over each data point xj with bandwidth matrix Hj that
describes the variation of the kernel function.

This formulation shows that the density estimated with the
KDE is non-parametric, since no parametric distribution is
imposed on the estimate; instead the estimated distribution
is defined by the sum of the kernel functions centred on the
data points. KDEs thus require the selection of two design
parameters, namely the parametric form of the kernel func-
tion and the bandwidth matrix. It has been shown that the
efficiencies of kernels with respect to the mean squared er-
ror between the true and estimated distribution do not differ
significantly and that the choice of kernel function should
rather be based on the mathematical properties of the ker-
nel function, since the estimated density function inherits
the smoothness properties of the kernel function (Silverman,
1986). The Gaussian kernel is therefore often selected in
practice for its smoothness properties, such as continuity and
differentiability. This thus leaves the estimation of the kernel
bandwidth as the only parameter to be estimated.

The ML criterion for kernel density estimation is typi-
cally defined as the log-likelihood function and has an in-
herent shortcoming since the estimated log-likelihood func-
tion tends to infinity as the bandwidths of the kernel func-
tions centred on each data point tend to zero. This thus leads
to a trivial degenerate solution when kernel bandwidths are
estimated by optimising the ML objective function. To ad-
dress this shortcoming the leave-one-out KDE estimate is
used. The leave-one-out estimate removes the effect of sam-
ple xi from the KDE sum when estimating the likelihood
of xi; optimising the leave-one-out ML objective function
with respect to the kernel bandwidth matrix will thus pre-
vent the trivial solution of the ML objective function where
lH(X) =∞when Hj = 0. The leave-one-out ML objective
function is thus defined as

lH(X) =

N∑
i=1

log

⎡
⎣ 1

N − 1

∑
j �=i

KHj
(xi − xj |Hj)

⎤
⎦ (2)

where H is used to denote the dependency of the log-
likelihood on the kernel bandwidths Hj .

Maximum-likelihood Kernel Bandwidth
Estimation
KDE bandwidths that optimise the leave-one-out ML objec-
tive function can be estimated by finding the partial deriva-
tive of the leave-one-out ML objective function in Eq. 2 with
respect to each bandwidth Hk

∂

∂Hk
(lH(X)) =

N∑
i=1

∂
∂Hk

[
1

N−1

∑
j �=i KHj (xi − xj |Hj)

]

pH(−i)(xi)

(3)
The bandwidth Hk can thus be estimated by setting this

partial derivative to zero and solving for Hk.

MLE kernel bandwidth estimation Based on the formu-
lation of the leave-one-out ML objective function in Eq.
3 we derive a new kernel bandwidth estimator named the
minimum leave-one-out entropy (MLE) estimator. (To our
knowledge, this is the first attempt where partial derivatives
are used to derive variable bandwidths in a closed form so-
lution.)

Since the partial derivative in Eq. 3 will only be non-zero
for j=k, we simplify this equation to give the partial deriva-
tive of the MLE objective function

∂

∂Hk
(lMLE(X)) =

N∑
i=1

1
N−1

∂
∂Hk

[KHk
(xi − xk|Hk)]

pH(−i)(xi)

(4)
If we restrict the MLE estimator to multivariate Gaussian
kernels with diagonal covariance matrices, the partial deriva-
tive of the kernel function with respect to the diagonal band-
width Hk in dimension d can be derived with the product
rule 1

h−2
kd Khkd

(
xid−xkd

hkd

) [
h−2
kd (xid − xkd)

2 − 1
]∏

p �=d Khkp

(
xip−xkp

hkp

)
(5)

where Hk(d,d) = h2
kd and hkd is the kernel bandwidth in

dimension d centred on data point xk. If we substitute the
partial derivative of this kernel function into Eq. 4, set the
result to zero and solve for Hk we obtain the MLE diagonal
covariance bandwidth estimate

Hk(d,d) =

∑N
i=1

KHk
(xi−xk|Hk)(xid−xkd)

2

pH(−i)(xi)∑N
i=1

KHk
(xi−xk|Hk)

pH(−i)(xi)

(6)

MLL kernel bandwidth estimation A key insight ob-
served by (Gangopadhyay and Cheung, 2002) and by
(Barnard, 2010) is that if the density function changes rel-
atively slowly throughout feature space, the optimal ker-
nel bandwidths will also change slowly throughout feature
space. If it is assumed that the density function changes
slowly throughout feature space, a simplification can be

1We provide complete proofs for the MLE diagonal and full co-
variance, MLL and ML-LOO bandwidth estimators as well as ex-
perimental results on convergence of the MLE bandwidhts in (van
der Walt 2014).

2675



made by assuming that the bandwidths of kernels in the
neighbourhood of a kernel are the same as that of the ker-
nel. Thus, when the bandwidth Hi is being estimated, it is
assumed that all other bandwidths are equal to Hi. Barnard
used this assumption to reduce the complexity of the the
leave-one-out kernel density estimate and derived a diagonal
covariance variable multivariate Gaussian kernel banwidth
estimator as

Hi(d,d) =

∑
j �=i KHi

(xi − xj |Hi) (xid − xjd)
2

∑
j �=i KHi

(xi − xj |Hi)
(7)

for each dimension d. This diagonal covariance bandwidth
estimator is called the MLL estimator.

ML-LOO bandwidth estimation (Leiva-Murillo and
Rodrı́guez 2012) also simplified the bandwidth optimisation
problem for ML kernel bandwidth estimation by estimating
an identical spherical or full-covariance bandwidth matrix
for all kernels – thus limiting the number parameters to be
optimised to a single bandwidth or single covariance matrix.
If the definition of the leave-one-out KDE for an identical
spherical Guassian bandwidth is substituted into Eq. 2, the
ML-LOO spherical bandwidth, h, can be solved as 2

h2 =
1

D

∑N
i=1

1
pH(−i)(xi)

∑
j �=i K (xi − xj |h) ‖xi − xj‖2

∑N
i=1

1
pH(−i)(xi)

∑
j �=i K (xi − xj |h)

(8)
Similarly, if the definition of the leave-one-out KDE for

an identical full covariance Gaussian bandwidth is substi-
tuted into Eq. 2, the ML-LOO full covariance bandwidth
matrix, H , can be solved as

H =

∑N
i=1

1
pH(−i)(xi)

∑
j �=i(xi−xj)(xi−xj)

TKH(xi−xj |H)
∑N

i=1
1

pH(−i)(xi)

∑
j �=i KH(xi−xj |H)

(9)

Global MLE bandwidth estimation Motivated by the
bias-variance trade-off, we derive a new estimator (named
the global MLE estimator) by defining the leave-one-out
kernel density estimate for a diagonal covariance bandwidth
matrix, Hg , that is identical for all kernels. If we substitute
this definition of the leave-one-out KDE into Eq. 2, Hg can
be solved as

Hg(d,d) =

∑N
i=1

∑
j �=i KHg (xid−xjd|Hg)(xid−xjd)

2

pHg(−i)(xi)

∑N
i=1

∑
j �=i KHg (xid−xjd|Hg)

pHg(−i)(xi)

(10)

for each dimension d.

Experimental Design
In this section we describe the experimental design to com-
pare and investigate the performance of the MLE, global
MLE, MLL, spherical ML-LOO and full covariance ML-
LOO estimators on a number of representative RW machine
learning datasets.

2Leiva-Murillo and Rodrı́guez further simplify this expression
by substituting

∑
j �=i K (xi − xj |h) = (N − 1)pH(−i)(xi)

Table 1: RW dataset summary
Dataset C D Ntr Nte
Letter 26 16 16000 4000
Segmentation 7 18 2100 210
Landsat 6 36 4435 2000
Optdigits 10 64 3823 1797
Isolet 26 617 6238 1559

Datasets
We select five RW datasets (with independent train and test
sets) from the UCI Machine Learning Repository (Lichman
2013) for the purpose of simulation studies. These data sets
are selected to have relatively high dimensionalities, since
high-dimensions are typical of many real-world machine
learning tasks. The selected datasets are the Letter, Segmen-
tation, Landsat, Optdigits and Isolet datasets. We summarise
these datasets in Table 1 and denote the number of classes
with “C”, the dimensionality with “D”, the number of train-
ing samples with “Ntr” and the number of test samples with
“Nte”. We refer the reader to (Lichman 2013) for a more
detailed description of these datasets.

Data pre-processing
Principal Component Analysis (PCA) is performed on all
RW datasets as a pre-processing step prior to density esti-
mation. PCA is used to reduce the dimensionality of datasets
by performing a linear transformation that re-aligns the fea-
ture axes to the directions of most variation, thus minimiz-
ing the variance orthogonal to the projection. Features with
smallest eigenvalues (or variance in the transformed feature
space) may thus be disregarded for the purpose of dimen-
sionality reduction. PCA also ensures that the features of
the transformed feature space are orthogonal, thus ensuring
the features are decorrelated. We retain only the transformed
features with eigenvalues larger than 1% of the eigenvalue
of the principal component. 3 We perform the PCA transfor-
mation on each class individually, since it has been shown
(Barnard, 2010) that this approach is more effective in com-
pressing features than when all classes are transformed si-
multaneously. We denote this pre-processing step for dimen-
sionality reduction as ”PCA1”.

A more subtle implication of PCA is that it serves as a
form of bandwidth regularisation for ML kernel bandwidth
estimators, which is a crucial task for kernel density estima-
tion in high-dimensional spaces. Because of the formulation
of the ML objective function, an infinite likelihood score is
obtained when two data points have corresponding values in
any dimension. When, for example, a Gaussian kernel is fit-
ted over a training data point, and a test point has the same
value in any of the dimensions, the bandwidth that will max-
imise the likelihood score in the dimension with correspond-

3The more conventional approach is to keep the features with
largest eigenvalues such that their eigenvalues sum to 95% of the
total of all eigenvalues. This approach attempts to capture 95% of
the variance, but fails when, for example, all the features have ap-
proximately the same eigenvalues.

2676



ing values will be 0. This phenomenon becomes more prob-
lematic as dimensionality increases, since the probability of
having two observations with the same value in any dimen-
sion increases significantly, thus leading to more degenerate
kernel bandwidths. PCA reduces the probability of identical
values in a dimension since the linear transformation of a
new feature is the weighted sum of the values of all dimen-
sions in the original feature space. Two data points thus need
to satisfy the same linear equation to have the same value in
a transformed dimension.

Kernel bandwidth initialisation
It was shown in (van der Walt and Barnard 2013) that the
Silverman rule-of-thumb bandwidth estimator performed re-
liably on a number of machine learning tasks. Based on this
empirical evidence and the intuitive theoretical motivation
that the Silverman estimator optimises the asymptotic mean
integrated squared error (assuming a Gaussian reference dis-
tribution), we make use of the Silverman bandwidth estima-
tor for bandwidth initialisation.

Since the Silverman estimator estimates a unique band-
width per dimension, we initialise the diagonal MLE and
MLL bandwidths of each kernel with the Silverman band-
widths for each dimension. Similarly, the full covariance
ML-LOO bandwidth matrix and global MLE bandwidth ma-
trix is initialised with a diagonal bandwidth matrix consist-
ing of the Silverman bandwidths. The spherical ML-LOO
bandwidth is initialised with the average of the Silverman
bandwidths.

Kernel bandwidth regularisation
In practice the optimal ML kernel bandwidth, hid, centred
on data point xi in dimension d, is degenerate under cer-
tain circumstances and tends to 0. Pre-processing with PCA
reduces the number of such occurrences significantly as ex-
plained earlier. As a further measure of regularisation we
make use of the theoretical lower bound of the optimal band-
width for the ML criterion as derived in (Leiva-Murillo and
Rodrı́guez 2012). The lower bound states that the minimum
optimal bandwidth, h2

id, is equal to the squared Euclidean
distance to the nearest-neighbour of xi. In practice it often
happens that two samples have the same values in a certain
dimension, thus making the nearest-neighbour distance 0.
We set the lower bound of a bandwidth in each dimension
to the nearest data point with a non-zero distance. For all es-
timators we validate that all bandwidths are above their re-
spective lower bounds, after each iteration of the bandwidth
optimisation procedure. The bandwidths that are below their
respective lower bounds after an iteration are thus replaced
by the corresponding lower bound value.

Performance evaluation
The RW datasets in Table 1 all have independent test sets.
We therefore perform 10-fold cross-validation on each class
specific training set to find the optimal number of training it-
erations for each class conditional density function. We then
calculate the likelihood scores of the test samples for each
class to estimate the sample entropy per class.

The optimal kernel bandwidth is obtained with a direct
approach where the right-hand side of each bandwidth esti-
mation equation is initialised with the Silverman bandwidth,
the left hand side is updated, and the updated bandwidth is
then substituted into the right-hand side again. This process
is repeated for 10 iterations on each training set.

Experimental setup
We compare the performance of the MLE, global MLE,
MLL, spherical ML-LOO and full covariance ML-LOO es-
timators on the Letter, Segmentation, Landsat, Optdigits and
Isolet datasets summarised in Table 1. PCA1 class-specific
transformations are performed on each class for all datasets
and the entropy score of each estimator is calculated per
class.

Results
In this section we present the results of the comparative
simulation study described in the experimental design sec-
tion. We denote the class number with “C”, the number of
principal components with “K”, the number of samples in
the class with “NC”, the MLE estimator with “MLE”, the
global MLE estimator with “MLE(g)”, the MLL estimator
with “MLL”, the spherical covariance ML-LOO estimator
with “ML-LOO(s)” and the full covariance ML-LOO esti-
mator with “ML-LOO(f)”. We make use of colour scales to
visually represent the relative performance of the estimators,
where green indicates the lowest entropy for a specific class
and red the highest entropy for a specific class.

The Letter dataset results in Table 2 show that the ML-
LOO(f) estimator performs optimally on all classes except
class 9, while the MLL and ML-LOO(s) estimator under-
perform on most classes.

The Segmentation dataset results in Table 3 show that
the MLE estimator performs optimally on all classes ex-
cept classes 2 and 7, and the MLL estimator performs com-
petitively on the same classes. The ML-LOO(f) estimator
performs optimally on classes 2 and 7, underperforms on
classes 3 and 4 and performs moderately on the remaining
classes. The MLE(g) and ML-LOO(s) estimators underper-
form on four classes, and perform moderately on the remain-
ing classes.

The Landsat dataset results in Table 4 show that the ML-
LOO(f) estimator performs optimally and near optimally
on all classes except class 2 and the global MLE estima-
tor performs competitively on most classes except class 2.
The MLE estimator performs optimally on class 2 and mod-
erately on the remaining classes, while the MLL estimator
performs competitively on class 2 and moderately on the re-
maining classes. The ML-LOO(s) clearly underperforms on
all classes.

The Optdigits dataset results in Table 5 show that the
MLE(g) estimator performs optimally on most classes. The
MLE and MLL estimators perform optimally on class 7
and perform moderately on the remaining classes. The ML-
LOO(s) estimator performs near optimally and optimally on
classes 3 and 5, moderately on classes 2 and 8 and underper-
forms on the remaining classes. The ML-LOO(f) estimator

2677



Table 2: Letter test entropy results (class-specific PCA1)
C K NC MLE(g) MLE MLL ML- ML-

LOO(f) LOO(s)
1 15 789 9.2873 10.2996 10.5922 7.9763 10.1448
2 15 766 11.8521 12.4504 13.2300 10.6214 12.5788
3 15 736 10.9114 10.9152 11.4798 10.2541 11.8211
4 14 805 10.6806 10.8480 11.2551 9.8986 11.1240
5 15 768 9.0948 10.0307 10.6545 7.4805 9.8392
6 13 775 9.3735 9.8056 10.0067 8.2964 10.0040
7 15 773 11.6837 12.4585 12.7124 10.6560 12.3793
8 14 734 10.6712 10.6509 10.6427 8.9762 11.4651
9 13 755 8.7703 7.4315 7.4505 7.6537 9.1916
10 13 747 8.0048 8.2247 8.5730 6.9398 8.5478
11 15 739 10.1285 10.7803 10.6981 9.1266 11.0117
12 12 761 6.9545 7.0843 7.2469 5.9676 7.4122
13 14 792 8.3489 8.4041 8.7171 6.7962 9.0203
14 14 783 9.3522 8.7992 9.7257 8.4742 10.1868
15 16 753 12.7908 13.0909 13.9332 11.5703 13.7332
16 15 803 9.9907 11.1816 11.5641 9.4843 10.8242
17 15 783 10.8606 11.8567 12.0359 9.6828 11.8571
18 15 758 10.9078 12.1141 12.4231 9.9914 11.3758
19 15 748 9.0280 9.8751 10.0427 7.5570 9.7640
20 13 796 7.8998 8.1263 8.4534 6.6746 8.7879
21 13 813 8.8809 9.0425 9.2017 7.9219 9.2352
22 14 764 10.0613 10.3505 10.6758 8.7185 10.8547
23 15 752 10.5571 10.9732 11.4986 9.3987 11.8726
24 15 787 11.0415 11.1224 11.6708 9.7728 12.2909
25 14 786 8.7009 9.3734 9.8168 7.4867 9.2290
26 15 734 10.2744 10.0557 10.8011 9.1422 11.2895

Table 3: Segmentation test entropy results (class-specific
PCA1)

C K NC MLE(g) MLE MLL ML- ML-
LOO(f) LOO(s)

1 13 330 14.7612 14.3396 14.5128 15.2068 16.6483
2 11 330 13.3975 13.5591 15.3803 12.9305 13.8543
3 12 330 10.8880 2.7401 3.5781 10.5969 9.6920
4 11 330 15.4156 7.7225 11.9012 17.5817 13.2768
5 11 330 15.4297 6.7261 7.2938 9.9464 17.4564
6 11 330 11.2927 10.7688 11.0891 11.3063 11.7564
7 10 330 7.1770 6.8176 6.8371 3.1038 7.3919

Table 4: Landsat test entropy results (class-specific PCA1)
C K NC MLE(g) MLE MLL ML- ML-

LOO(f) LOO(s)
1 8 1533 10.6246 10.6571 10.6958 10.5527 11.0285
2 10 703 11.4557 11.2188 11.2724 11.3094 12.0536
3 14 1358 16.6442 16.7766 17.1863 16.4641 17.8911
4 13 626 14.6303 14.6583 14.7188 14.6150 15.8079
5 11 707 14.1853 14.6757 14.6641 14.2129 14.8374
6 11 1508 14.2989 14.2268 14.5458 14.2334 15.0980

performs optimally on class 10, performs moderately on four
classes and underperforms on the remaining classes.

The Isolet dataset results in Table 6 show that the MLE(g)
estimator performs optimally on 20 of the 26 classes, while
the MLE estimator performs optimally on five classes and
performed optimally tied with the MLE(g) estimator on
class 14. The MLL estimator performs optimally on class 9
and performs optimally with the MLE estimator on classes
3, 20 and 26. The ML-LOO(f) estimator performs optimally
with the MLL estimator on class 9, while the ML-LOO(s)
estimator consistently underperforms on all classes.

In general, we have observed that the ML-LOO(f) esti-

Table 5: Optdigits test entropy results (class-specific PCA1)
C K NC MLE(g) MLE MLL ML- ML-

LOO(f) LOO(s)
1 46 554 52.7315 54.9642 54.9642 55.0121 57.2316
2 36 571 37.8930 39.9837 39.9837 40.0183 39.8571
3 41 557 55.1442 60.8972 60.8972 61.1132 55.9001
4 50 572 63.7679 67.9808 67.9808 69.7068 69.8641
5 39 568 45.1030 45.1030 45.1030 45.1332 44.2904
6 46 558 55.7444 58.8748 58.8748 58.9782 59.6404
7 37 558 46.8292 46.7069 46.7069 46.9650 48.8804
8 41 566 52.9752 55.9436 55.9436 55.9758 55.6049
9 50 554 61.2910 63.9965 63.9965 64.2079 65.3601
10 43 562 57.9241 56.2229 56.2229 51.2123 59.1375

Table 6: Isolet test entropy results (class-specific PCA1)
C K NC MLE(g) MLE MLL ML- ML-

LOO(f) LOO(s)
1 92 300 189.0759 191.2731 190.8883 190.8883 205.5452
2 107 300 211.6703 210.8217 212.5131 212.5131 227.0795
3 98 300 203.3099 202.9658 202.9658 202.9675 218.5153
4 101 300 205.9877 209.6424 207.7975 207.8165 220.4039
5 103 300 213.3857 215.8229 218.8905 218.9028 230.3118
6 100 300 199.3268 199.7004 200.6295 200.6515 219.3737
7 90 300 186.8359 189.5903 188.2592 188.2732 198.8510
8 88 300 180.7441 182.4256 181.7845 182.0967 195.6949
9 108 300 230.2376 236.3707 226.6773 226.6732 243.0001
10 85 300 182.6589 184.5528 184.5528 184.6028 193.5564
11 89 300 189.1564 190.9196 190.9196 190.9604 199.9672
12 118 300 241.4164 252.6089 249.7367 250.0967 267.3455
13 123 300 244.3422 248.1532 249.8309 249.8319 269.9968
14 119 300 239.3669 239.3669 261.6026 241.8353 264.3237
15 103 300 209.7407 215.6002 213.0124 213.1697 232.1384
16 104 300 206.8094 208.4278 207.3090 207.3090 221.1164
17 108 300 222.6612 227.7650 227.7650 227.7496 244.1215
18 106 300 217.0238 224.1280 221.0936 221.2660 235.8874
19 96 300 199.3421 201.4060 203.1794 203.7217 219.1281
20 100 300 203.0767 202.6541 202.6541 202.6541 217.6525
21 121 300 239.3333 241.4055 244.0612 244.1695 260.1166
22 113 300 228.0789 226.9123 230.1929 230.1947 248.3391
23 104 300 207.1714 208.6037 209.0199 209.0204 220.9262
24 92 300 194.4274 199.8320 197.9024 197.9059 209.3233
25 109 300 218.3860 219.9983 220.8091 221.0781 239.4411
26 100 300 206.8940 206.6910 206.6910 206.7172 224.4596

mator performed optimally on most classes of the Letter and
Landsat datasets; the MLE estimator performed optimally
on most classes of the Segmentation dataset and the MLE(g)
estimator performed optimally on most classes of the Opt-
digits and Isolet datasets.

We also observed that the MLE and MLL estimators ex-
hibited very similar relative performance behaviour and that
the MLE generally performed better. If we compare the
MLE bandwidth estimator in Eq. 6 and the MLL bandwidth
estimator in Eq. 7 we find that these estimators are identical
except that the numerator and denominator of the MLE esti-
mation equation is normalised with the leave-one-out KDE
likelihood score of each sample xi. This explains the sim-
ilar performance behaviour of these estimators and shows
that this normalisation factor leads to an improvement in
performance. This term may be regarded as a regularisa-
tion term since the effect on the estimated bandwidth of data
points that fall within dense regions is reduced while the ef-
fect of data points that lie in lower density regions are in-
creased. To illustrate the regularisation effect, consider two
univariate data points, x1 and x2, that lie very close to each
other. Both x1 and x2 will have relatively high density val-

2678



ues for ph(−1)(x1) andph(−2)(x2), since they are close in
feature space and will increase each other’s density. If the
bandwidth,h1, is estimated for the kernel centred on x1, the
distance (x1−x2)

2 will be very small, but since the value of
pH(−1)(x2) will be large, the contribution of (x1 − x2)

2 to
h1 will be reduced, thus preventing h1 from becoming too
small.

The ML-LOO(s) estimator estimates the single bandwidth
for all dimensions and all kernels, and the general under-
performance of this estimator compared to the global MLE
estimator shows that local scale variations should differ be-
tween dimensions.

The MLE(g) estimator estimates an identical covariance
bandwidth matrix for all kernels, and the superior perfor-
mance of this estimator on the Optdigits and Isolet datasets
show that these datasets require scale variations between
features but no not require drastic local scale variations
within dimensions. We derive this conclusion from the fact
that the MLE and MLL estimators are capable of modelling
drastic changes in local scale variation within features (since
the bandwidth is adapted for each kernel in each dimension),
and since the MLE(g) estimator generally outperforms these
estimators on these two datasets, it shows an interesting case
of the bias-variance trade-off: having fewer parameters, the
MLE(g) estimator is less flexible than the MLE and MLL
estimators; however, those parameters can be estimated with
greater reliability, leading to the best performance in many
cases. It is important to note that the MLE(g) estimator can
model local scale variations to some extent within features,
since a kernel function is placed on each data point, and if
the locations of data points within a dimension vary the esti-
mated density function for the dimension will also vary ac-
cording to the locations of the data points, thus capturing
local scale variations. However, the bandwidths placed on
each data point are identical within a dimension and there-
fore drastic scale variations cannot be modelled accurately.
Similarly, the MLE(g) estimator can also model correlation
between features to some extent since a kernel is placed on
each data point, and if data points between features vary in
the same direction the correlation between these features
will be captured by the density of the kernels placed on
these data points. However, since the MLE(g) estimator has
a diagonal covariance bandwidth matrix, local variations are
modelled parallel to the feature axes. Thus if local variations
are not parallel to the feature axes, the ML-LOO(f) estima-
tor will perform better since the ML-LOO(f) estimator can
model local density that is not parallel to the feature axes, by
making use of correlation coefficients in the full covariance
bandwidth matrix.

The ML-LOO(f) estimator estimates an identical full co-
variance matrix for all kernels, and the superior performance
of this estimator on the Letter and Landsat datasets show
that these datasets require a density estimate that can model
local variations that are not necessarily parallel to the fea-
ture axes. This conclusion is derived from the fact that the
ML-LOO(f) generally outperforms the MLE(g) estimator on
these two datasets, and since both estimators estimate an
identical bandwidth matrix for each kernel, the only differ-
ence is that the ML-LOO(f) has a full covariance bandwidth

matrix that models local correlation in the density estimate
by making use of correlation coefficients in the kernel band-
width matrix.

Conclusion and future work

We have shown that none of the ML estimators investigated
performed optimally on all tasks, and based on theoretical
motivations confirmed with empirical results it is clear that
the optimal estimator depends on the degree of scale vari-
ation between features and the degree of changes in scale
variation with features.

The results show that the full covariance ML-LOO and
global MLE estimators (which estimate an identical full and
diagonal covariance matrix respectively for each kernel) per-
formed optimally on four of the five datasets investigated,
while the MLE estimator (which estimates a unique band-
width for each kernel) performed optimally on only one
dataset. This is an interesting case of the bias-variance trade-
off: having fewer parameters, the full covariance ML-LOO
and global MLE estimators are less flexible than the MLE
and MLL estimators; however, those parameters can be es-
timated with greater reliability, leading to the best perfor-
mance in many cases.

From the theoretical and empirical results in this work it
is clear that the optimal estimator should somehow function
like the full covariance ML-LOO estimator in regions with
low spatial variability, and must function like the MLE esti-
mator and be able to adapt bandwidths in regions with high
spatial variability, especially for outliers.

We therefore believe that it would be interesting to inves-
tigate a hybrid kernel bandwidth estimator by first detecting
and removing outliers. Clustering can then be performed on
the remaining data and the full covariance ML-LOO band-
width estimator can be used to estimate a unique full co-
variance kernel bandwidth for each cluster - each kernel will
thus make use of the full covariance bandwidth matrix of
the cluster to which it is assigned. The MLE estimator can
then be used to estimate a unique bandwidth for each outlier;
since the MLE estimator can model scale variations, this will
ensure that outliers have sufficiently wide bandwidths. This
proposed hybrid approach will thus generally function like
the full covariance ML-LOO estimator in the clustered re-
gions and has the added ability to change the direction of
local scale variations between clusters. This estimator will
also be capable of making the bandwidths of kernel function
centred on outliers sufficiently wide. We therefore propose
to implement this hybrid ML kernel bandwidth estimator in
future work and perform a comparative study between this
approach, the MLE, full covariance ML-LOO and the first
hybrid approach proposed above.

In summary, the results of this investigation show that the
contribution of the global MLE and MLE estimators are ex-
tremely valuable since they provide two alternative kernel
bandwidth estimators to employ in high-dimensional feature
spaces.

2679



References
Barnard, E., 2010. Maximum leave-one-out likelihood for
kernel density estimation, in: Proceedings of the twenty-first
annual symposium of the Pattern Recognition Association
of South Africa (PRASA), Stellenbosch, South Africa.
Breiman, L., Meisel, W., Purcell, E., 1977. Variable kernel
estimates of multi-variate densities. Technometrics 19,
135144.
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society. Series B (Method-
ological) , 138.
Fix, E., Hodges, J.L., 1951. Discriminatory analysis,
nonparametric estimation: consistency properties. Technical
Report, Report No. 4, Project No. 21-49-004. USAF School
of Aviation Medicine. Randolph Filed, Texas.
Friedman, J.H., Stuetzle, W., Schroeder, A., 1984. Projec-
tion pursuit density estimation. Journal of the American
Statistical Association 79, 599608.
Gangopadhyay, A., Cheung, K., 2002. Bayesian approach
to the choice of smoothing parameter in kernel density
estimation. Journal of Nonparametric Statistics 14, 655664.
Heckerman, D., 2008. A tutorial on learning with Bayesian
networks. Springer.
Leiva-Murillo, J.M., Rodrı́guez, A., 2012. Algorithms for
maximum-likelihood bandwidth selection in kernel density
estimators. Pattern Recognition Letters 33, 17171724.
Lichman, M. ”UCI machine learning repository, 2013.”
URL http://archive.ics.uci.edu/ml (2016).
Loftsgaarden, D.O., Quesenberry, C.P., 1965. A nonpara-
metric estimate of a multivariate density function. The
Annals of Mathematical Statistics, 10491051.
Redner, R.A., Walker, H.F., 1984. Mixture densities, max-
imum likelihood and the em algorithm. SIAM review 26,
195239.
Scott, D.W., Sain, S.R., 2005. Multi-dimensional density
estimation. Handbook of Statistics 24, 229261.
Silverman, B.W., 1986. Density estimation for statistics and
data analysis. Volume 26. CRC press.
van der Walt, C.M., Barnard, E., 2013. Kernel bandwidth
estimation for non- parametric density estimation: a com-
parative study, in: Proceedings of the twenty-fourth annual
symposium of the Pattern Recognition Association of South
Africa (PRASA), Johannesburg, South Africa.
van der Walt, C. M. 2014. Maximum-likelihood kernel
density estimation in high-dimensional feature-spaces.
Ph.D. diss., North-West University, South Africa.
Webb, A.R., 2003. Statistical pattern recognition. Wiley.
Whittle, P., 1958. On the smoothing of probability density
functions. Journal of the Royal Statistical Society. Series B
(Methodological) , 334343.

2680




