Decentralised Energy Solutions The CSIR Energy Autonomous Campus Presentation at POWER-GEN & DistribuTECH Africa 2017

Dr Clinton Carter-Brown, Chief Engineer: CSIR Energy Autonomous Campus

Sandton, 19 July 2017

Cell: +27 83 630 0626 Email: ccarterbrown@csir.co.za

The CSIR is South Africa's multidisciplinary research council

Global Context

Implications for Africa

Case Study: Microgrid Design in South Africa

3

What is different today as compared to just a few years ago?

Renewables are now cost competitive to alternative new-build options in large parts of Africa

- Renewables became cost competitive to conventionals during the last decade (PV: last 2-3 years)
- Subsidy-driven market creation in first-mover renewables regions (US, Europe, Japan) led to technology improvements and mass manufacturing

In matured markets, renewables are a substitution in a volume-wise stagnating energy system

- Renewables compete with an existing, steady-state energy system \rightarrow fuel savers for the existing fleet
- Major incumbents with business models based on "large, central" suffer in terms of market share

In emerging markets, this is different: renewables can be at the core of the energy-system expansion

- Renewables compete with alternative new-built options / future scenarios for the energy structure
- More than just fuel savers, they change the entire paradigm on which energy systems were traditionally planned, designed, built and operated (large, central → small, distributed)

World: In 2016, 124 GW of new wind and solar PV capacity installed globally

This is all very new: Roughly 80% of the globally existing solar PV capacity was installed during the last five years

5

World: Significant cost reductions materialised in the last 5-8 years

Actual tariffs: new wind/solar PV 40% cheaper than new coal in RSA

Results of Department of Energy's RE IPP Procurement Programme (REIPPPP) and Coal IPP Proc. Programme

... have made new solar PV & wind power 40%

cheaper than new coal in South Africa today

Significant reductions in <u>actual</u> tariffs ...

Notes: Exchange rate of 14 USD/ZAR assumed Sources: <a href="http://www.energy.gov.za/files/renewable-energy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy-betweenergy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-betweenergy

What is different with a high share of renewables?

8

Global Context

Implications for Africa

Case Study: Microgrid Design in South Africa

9

Customer demand is always scattered across more or less wide areas

In future, because of cost-competitiveness of distributed renewables, the system architecture can be based on interconnected microgrids

Solar PV (roof & ground-mounted) will be installed literally everywhere

Wind turbines will complement where economically viable

Flexible, dispatchable generators (biogas, biomass, diesel, natural gas, hydro, storage, etc.) will complement the local microgrid

Each microgrid can in principle run on its own...

... but higher reliability & lower costs are achieved by interconnecting

Opportunity for Africa: leapfrog large-scale, central power system architecture directly towards distributed, renewables-based system

our future through science

Global Context

Implications for Africa

Case Study: Microgrid Design in South Africa

22

Energy-Autonomous Campus Programme

Real-world research platform for future energy systems and utility business models

Background

- Future energy systems will largely be based on Distributed Energy Resources (DER) – a combination of VRE, storage and demand response technologies
- Technology and systems innovations are required to design, build and operate such energy systems in an optimal manner
- The business model of utilities will also be affected

Response: Energy-Autonomous Campus Programme

The CSIR started a programme where it implements in the real world its research findings as a test bed for future energy systems

- Demonstrate how to cost-efficiently design and operate an energy system based on distributed, VRE technologies
- Implementation across all CSIR campuses, potentially further integration of other research campuses
- Integration of energy storage in form of batteries & hydrogen
- Energy savings and demand response opportunities
- Key outcomes: System design/operations, technology demonstration, future utility business model

Sir

our future through science

Energy-Autonomous Campus Programme

The Pretoria Campus load

Energy-Autonomous Campus Programme

Potential future campus energy mix

Demand and consumption

20% reduction through energy efficiency (30 GWh) \rightarrow 24GWh) per year					
Through Demand Response (DR) measures including Electric Vehicles					
All CSIR rooftops, 1-2 ground-mounted plants Total of 8 MWp → 13 GWh/yr					
3-4 MW-class wind turbines Total of 3 MW → 7 GWh/yr					
Municipal/organic waste from surrounding supermarkets/restaurants 4-5 MW @ 800-1,000 hrs/yr → 4 GWh/yr					
Trading with Tshwane municipality (import and export) based on pure economics					
For long-term storage of excess renewables					
For short-term peak shaving					

Heat storage: For flattening of heat/cold demand

Current activities

Wind Turbine:

Wind Assessments & Feasibility studies

Biogas plant:

Feed stock analysis, Site selection, Environmental Impact Assessment, etc

Demand side management:

Campus energy audit & street light energy audit

Storage:

Technology selection process, procurement of electric vehicles for the campus

Over 1 MW of Solar PV installed to date

Project	Size	Commissioned	Investment	Savings in 2016
1. Solar PV plant (1-axis)	558 kW	August 2015	\$770,000	\$80,000
2. Solar PV plant (2-axes)	200 kW	November 2016	\$500,000	Start-up
3. Solar PV plant (rooftop)	250 kW	March 2017	\$320,000	N/A

CSIR electricity demand in MW

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

our future through science

Real world platform for researchers

CSIR's Energy-Autonomous Campus

Platform for CSIR researchers and partners (companies and universities) to optimally design, implement
and operate microgrids and to demonstrate new energy technologies in a real-world environment

Typical Services and Solutions on the Energy-Autonomous Campus

- Installation and operational guidelines for renewable power
- Procurement guidelines for renewable plants
- Smart and Micro Grid design and operation guidelines
- Installation and operational guidelines for battery storage systems in micro grids
- Test bench for new renewable technologies

Additional CSIR Energy Systems research work

- Development of Integrated Resource Plans for cities, regions, countries
- Development of operational guidelines and procedures for high-RE power systems

Re a leboha

Ha Khensa

Siyathokoza

Thank you

Enkosi

Re a leboga

Ro livhuha

Siyabonga

Dankie

29 Note: "Thank you" in all official languages of the Republic of South Africa