

UNIVERSITEIT · STELLENBOSCH · UNIVERSITY jou kennisvennoot · your knowledge partner

Methods of flood extent mapping using SAR imagery in the Zambezi (Caprivi) Region, Namibia

Jaco Kemp¹, Mariel Bessinger¹, Melanie Luck-Vogel²

Zambezi Region

Ð

Zambezi Region

Ð

Zambezi Region

4

http://en.wikipedia.org/wiki/File:Village_in_caprivi_flood_plain.jpg

http://earthobservatory.nasa.gov/IOTD/view.php?id=38212

http://earthobservatory.nasa.gov/IOTD/view.php?id=38212

>

2009 Floods

- Zambezi river level rose more than 1m between 7 March and 15 March 2009
- Rose another meter between 15 March and 22 March 2009
- Worst flooding in 40 years.
- At least 92 deaths (drowning, crocodile attacks etc)
- More than 23,000 displacements in Zambezi Region alone – more than 50,000 in total

>

2009 Floods

- Lake Liambezi and the Bukalo Channel that feeds it dried up in the 80's and 90's, prompting people to settle in the flood plain.
- Activation of the Bukalo Channel and the recovery (flooding) of Lake Liambezi caused thousands of evacuations

http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=38282

SAR Data

Synthetic Aperture Radar

- SAR satellite provide side-looking microwave illumination to the ground, and record the intensity (and phase) of the backscattered radio waves
- Surface roughness impacts the backscattered signal

Department of Geography and Environmental Studies

http://telin.ugent.be/~sanja/Sanja_files/images/SAR_comp_orig.jpg

SAR Data

This study

- ENVISAT ASAR Wide Swath (25 images)
 - C-band (~5cm wavelength)
 - 150m resolution
- ALOS PALSAR FBD (3 images)
 - L-band (~23cm wavelength)
 - 20m resolution
- ALOS PALSAR PLR (6 images)
 - L-band (~23cm wavelength)
 - 30m resolution

Φ --

SAR Data

Sensor	Date
ASAR WSS	2006/03/12
ASAR WSS	2006/03/31
ASAR WSS	2006/04/01
ASAR WSS	2006/04/03
ASAR WSS	2006/04/17
ASAR WSS	2006/05/24
PALSAR PLR	2007/03/14
PALSAR PLR	2007/03/14
PALSAR PLR	2007/03/31
ASAR WSS	2007/04/01
ASAR WSS	2007/04/02
ASAR WSS	2007/04/04
ASAR WSS	2007/04/17
ASAR WSS	2007/04/20
ASAR WSS	2007/04/21
ASAR WSS	2007/04/23
ASAR WSS	2008/04/24
PALSAR FBD	2008/04/24
PALSAR FBD	2008/05/23
	2008/05/23

Sensor	Date
ASAR WSS	2009/02/14
ASAR WSS	2009/02/17
ASAR WSS	2009/03/02
ASAR WSS	2009/03/17
PALSAR PLR	2009/03/19
PALSAR PLR	2009/03/19
PALSAR PLR	2009/04/05
ASAR WSS	2009/03/20
ASAR WSS	2009/03/23
ASAR WSS	2009/03/24
ASAR WSS	2009/04/25
ASAR WSS	2009/05/10
ASAR WSS	2009/05/11
ASAR WSS	2009/05/14
ASAR WSS	2009/05/29
ASAR WSS	2009/05/30
ASAR WSS	2010/05/30

Department of Geography and Environmental Studies

n e

ner

ar

19

ner

ner

n e

ner

ner

ar

n e

p a r

Φ

d g

Φ

 \geq

0

k D

o u r

 \geq

n e

dge par

Φ

n e

ner

p a r

Φ

n e

p a r

Φ

d g

Φ

ner

p a r

ner

ar

n e

ar

ner

ar

ner

Φ

ner

ar

Φ

ສ 0 Φ

Ъ

Φ

×

Π 0

n e

n e

p a r

n e

p a r

Φ

δ

ner

p a r

• Lower mode corresponds to flooding

- Lower mode corresponds to flooding
- Local minimum used to initialize thresholding

- Lower mode corresponds to flooding
- Local minimum used to initialize thresholding
- Multiple thresholds around local minimum in 0.5 dB increments

- Lower mode corresponds to flooding
- Local minimum used to initialize thresholding
- Multiple thresholds around local minimum in 0.5 dB increments

Φ

p a

- Lower mode corresponds to flooding
- Local minimum used to initialize thresholding
- Multiple thresholds around local minimum in 0.5 dB increments

Single mode case

• Use inflection point as highest threshold

Single mode case

• Use inflection point as highest threshold

раг

Φ

p a

g e

p a

ສ

ASAR WSS – Overall Accuracy – 2006

Department of Geography and Environmental Studies

82

ner

r T

ສ

0

Ф

С

σ

Φ

≥

0

с Х

_

n o

>

ASAR WSS – Kappa – 2006

ASAR WSS – Overall Accuracy – 2007

Department of Geography and Environmental Studies

е Г

ASAR WSS – Kappa – 2007

ASAR WSS – Overall Accuracy – 2008

Department of Geography and Environmental Studies

86

ASAR WSS – Kappa – 2008

ASAR WSS – Overall Accuracy – 2009

Department of Geography and Environmental Studies

ASAR WSS – Kappa – 2009

Department of Geography and Environmental Studies

ASAR WSS – Overall Accuracy – 2010

Department of Geography and Environmental Studies

ASAR WSS – Kappa – 2010

Department of Geography and Environmental Studies

PALSAR PLR – Kappa – 2009

Active Contour Model

Department of Geography and Environmental Studies

ц С

a L

0

Ф

О

σ

Φ

≥

0

 $\boldsymbol{\prec}$

y o u r

ACM vs Thresholding – 2006 ASAR

ACM vs Thresholding – 2007 ASAR

99

ACM vs Thresholding – 2008 ASAR

с Ф

ar

0

Ф

С

σ

Φ

≥

0

 $\boldsymbol{\prec}$

y o u r

ACM vs Thresholding – 2009 ASAR

ACM vs Thresholding – 2010 ASAR

ACM vs Thresholding – 2009 PALSAR

- Thresholding is a simple and generally efficient way to rapidly estimate flood extent
- Accuracy is dependant on several variables, however
- Optimal Threshold
 - ASAR: Best accuracies at -12 dB
 - PALSAR
 - Best HH accuracy at -18.5 dB
 - Best HV accuracy at -26.2 dB
 - Best VV accuracy at -20.0 dB
 - Cross-polarized marginally more accurate than co-polarized (but this needs to be studied further)

- Determining optimal thresholds statistically is complicated by several factors.
- Obtaining an on-screen transect over water edge might be more efficient?
- ACM performs well when SAR contrast is low, but is generally evenly matched with thresholding.
- It also requires an initial contour layer, to which it is very sensitive.

- Change detection on backscatter
- Change detection
 on interferometric coherence

 \geq

