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Abstract: In the ashes of Moore’s Law, companies have to acclimatise to the vast increase of data flowing through their
networks. Reports on information breaches and hackers claiming ransom for company data are rampant. We live in a world
where data requirements have become dynamic, where things are constantly changing. The field of intrusion detection
however have not changed much, traditional detection methods are still the norm for commercial products promoting a
rigid, manual and static detection platform. Intrusion Detection Systems (IDS) analyse network traffic to identify suspicious
patterns with the intention to compromise the system. Practitioners train classifiers to classify the data within different
categories e.g. malicious or normal network traffic. Machine learning has great potential when applied in the intrusion
detection domain: decision trees (DT), random forests (RF) and ant colony optimization (ACO) are all popular research topics.
This paper focuses on the recent advances within machine learning, specifically the Ant Tree Miner (ATM) classifier. The ATM
classifier proposed by Otero, Freitas & Johnson (2012) builds decision trees using ant colony optimization instead of
traditional C4.5 or CART techniques. Our experimental process ensures reliability, comparability and reproducibility, which
are lacking in some previous research within the field. This approach is intended to improve on previous studies combining
both domains. The ATM classifier has not been tested in the intrusion detection domain.

Keywords: ant tree miner, ant colony optimization, decision trees, intrusion detection, swarm intelligence

1. Introduction

Kemmerer and Vigna (2002) defined intrusion detection (ID) as the process of distinguishing between malicious
or unauthorized network activities. As mischievous and malevolent activities become more advanced and
adaptable, intrusion detection techniques are required to perform more intelligently in order to overcome
avant-garde attacks (Kumar, 2007; Hoque et al., 2012; Aghdam & Kabiri, 2016). Computer environments are still
being penetrated and the amount of data harboured and transported throughout company networks has vastly
increased in recent years. The data boom has left companies with significant vulnerabilities waiting to be
exploited.

Bilge and Dumitras (2012) performed an empirical study on zero-days attacks, and found that typical zero-day
attacks last 312 days on average. Once the vulnerability is disclosed publicly, the number of exploits increases
by a factor of five. In addition, as Burdette (2016) noted, most successful corporate attacks are only discovered
on average after 314 days. Frei (2014) from FireEye also supports this alarming statement.

The real crux within the cybersecurity field is detection. It is difficult to prevent something you are unaware of,
and without detection, no controls will be able to properly satisfy the underlying risk. The detection problem
lead to the ongoing research in intrusion detection using machine learning techniques such as decision trees,
random forests and ant colony optimization as classification techniques to classify intrusion data.

Despite vast amounts of research in intelligent ID domains, few studies have found an effective solution
(Sommer & Paxson, 2010; Mohammad, Sulaiman & Khalaf, 2011; Lee et al., 2002). Irreproducible results and
unreliable research techniques are to blame (Section 4). However, it has been shown that it is possible to create
intelligent ID components. Decision trees and random forests have proved to be among the best classifiers to
use for intrusion detection (Albayati & Issac, 2015). Ant colony optimization, although unconventional within
intrusion detection, does have significant value when used to solve optimization problems or even to classify
data (Lépez-lbanez,Stitzle & Dorigo, 2015).

Section 2 covers background information. In Section 3 contains an introduction to the Ant Tree Miner Classifier,

and a description of the experimental setup is given in Section 4. Results are discussed in Section 5, and the
conclusion and a discussion of future research are given in Section 6.
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2. Background information

In this section, we discuss intrusion detection systems and the different detection methodologies used in order
to detect malicious data. The benefits and implementation of machine learning techniques follow as we look at
popular techniques such as decision trees and ant colony optimization in the intrusion domain.

2.1 Intrusion detection systems

Different types of intrusion detection systems (IDS) can be identified based on how the systems operate and
gather information. In order to sift through all the data and identify malicious activities, a detection component
is required. An IDS makes use of several methodologies in order to detect the malicious data or anomalies, and
the most used detection methodologies are signature-based, anomaly-based detection and newer hybrid
methods (Scarfone & Mell, 2007; Modi et al., 2013).

2.2 Machine learning with intrusion detection

Data mining, combined with machine learning is defined as processing data to gain the implied, prior unknown
potential of useful information (Parihar and Tiwari, 2016). The benefit of machine learning in ID is the ability to
withdraw the required and unknown information and regularities from massive network data. If machine
learning techniques can detect patterns in a set of data, it should also be able to detect future intrusions in the
same data. Classifiers are algorithms which receive labelled data from training datasets, align it to predefined
groups defined by their specific qualities and then output a classifier that can predict the correct class to which
a new item belongs. Classification of intrusion data is a mature research area and several classifiers have had
success in detecting intrusions (Nguyen & Choi, 2008; Tsai, Hsu, Lin et al., 2009). The machine learning domain
is evolving more rapidly than that of ID, and this creates an urgent need to find improved techniques with the
ability to classify intrusion data. Decision Trees are regarded to be the most reliable and accurate method
implemented within intrusion data (Albayati & Issac, 2015; Tavallaee et al., 2010). Decision trees are tree-like
graphs that consist of internal nodes that represents a test of an attribute, branches that denote the outcome
of such tests, and leaf nodes that outline the label. The path followed from the root node to the leaf indicates
the rules for classification. The main advantage of DTs over other classification algorithms is that they provide a
rich set of rules that are easy to understand and can be integrated with real-time technologies. Singh and Nene
(2013) noted that although DTs are very accurate, they are computationally intensive. Machine learning
ensemble methods are used to obtain better predictive performance that would have been impossible with any
constituent learning method e.g. C4.5, tree learners, decision tree learners and Bayesian methods (Dietterich,
2000). Figure 1 illustrates a simple decision tree that classifies intrusion data. The protocols TCP and UDP
represent branches of the root node 1. The two classifications, serror_rate and logged_in, are internal nodes.
TCP protocol with a serror_rate value over 3, will trigger an alarm.

error_rate >3
. Alarm

No Alarm
serror_rate < 3

g
!

logged_in=1
Alarm

y

No Alarm
logged_in=0

Figure 1: Decision tree intrusion classification example

Rai et al., (2016) proposed the creation of a DT algorithm in which they use their own split algorithm for
implementation within ID. Tesfahun and Bhaskari (2013) used random forests as well as their own Synthetic
Minority Oversampling Technique. Zhang and Zulkernine (2005) applied RF for ID and improved performance by
building a balanced dataset. Tavallaee et al., (2009) applied DT, RF and several of the most popular classifiers in
their NSL-KDD dataset, providing a baseline result.

Swarm intelligence attempts to replicate the nature of swarms and colonies. Ants they leave a chemical
substance, pheromone, to mark a specific route. Pheromone evaporates slowly over time. The strength of the
pheromone level will evaporate faster on a longer path because it takes longer to traverse. Thus, shorter paths
are chosen more often, and build up higher pheromone levels than longer paths. Based on this knowledge, ACO
algorithms are known for solving optimization problems and clustering data and have been particular successful
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when applied in business, engineering and science. The algorithm by Dorigo and Gambardella (1997) introduced
a new way of classifying data using the nature of ant colonies. Ramos and Abraham (2005) introduced the
ANTIDS, an ant colony based clustering technique to detect intrusions. Tsang and Kwong (2006) improved the
ant mining cluster algorithm and applied it to the KDD99 Cup dataset for intrusion detection. Aghdam and Kabiri
(2016) created a feature selection process using ACO in ID exhibiting very low computational complexity when
using a simplified feature set. A recent advance, combining ACO and DT, by Otero, Freitas & Johnson (2012)
introduced a new way to build DTs. Their initial experiments with other machine learning datasets showed
improvement from the traditional techniques used to build DTs.

3. The ant tree miner classifier

The unknown spectrum of inducing DT with ACO algorithms has been a new research topic since 2012 (Otero,
Freitas & Johnson, 2012). The divide-and-conquer principle is used to induce a DT: it involves iterating from top-
down, selecting the best attribute to label an internal node of the tree. However, this process becomes moot as
the appropriate attribute has to be selected based on heuristic evaluation. The most popular heuristics for
selecting the attributes in decision trees are CART, ID3 and the well-known C4.5 algorithm (Breiman et al., 1984;
Quinlan, 1986 and 1993). Otero and et al. (2012) proposed a new method to induce DTs the method follows the
traditional structure of ACO. Figure 2 shows a high-level overview of the ATM algorithm in pseudo-code.

Input: training samples, list of predictor features

Output: best tree

. InitialisePheromones();

2. ComputeHeuristicInformation();

3. treeGB < empty set;

4.m<&0;

5. while m < maximum iterations and not CheckConvergence() do
6

7

8

Juny

treelB & empty set;
for n <& 1 to colony size do
. treeN & CreateTree(Examples, Attributes, - );
9. Prune(treeN);

10. if Q(treeN) > Q(treelB) then
11. treelB & treeN;

12. end if

13. end for

14. UpdatePheromones(treelB);

15. if Q(treelB) > Q(treeGB) then

16. treeGB < treelB;

17. end if

18. mé&m+1l;

19. end while

20. return treeGB ;

Figure 2: ATM pseudo code adopted from Otero and et al. (2012)

The ATM Classifier differs significantly from the Ant-Miner algorithm by building DTs instead of rules. The ATM
method of inducing DTs has not previously been implemented within ID. Section 4 outlines how DT based
algorithms are among the best to use within ID. Otero and et al. (2012) experimented with the new ATM classifier
and the results concluded improved accuracy, performance and statistically significant differences from other
classifiers. However, the question still begs: How will the ATM Classifier perform when implemented within a
new domain with much more complex data?

4. Implementation and testing

Research and experimentation within the combined intrusion detection and machine learning fields have
received a lot of criticism (Tavallaee et al., 2010; Sommer & Paxson, 2010). Poorly designed experiments have
been to blame for discrepancies in success between research areas and practical implementations. Pitfalls are
summarized below (Tavallaee et al., 2010; Sommer & Paxson, 2010):

= No clear indication of datasets used for training and test purposes
=  Flawed datasets such as KDD99 used for machine learning

= No clear indication of parameters used, motivation for their parameter selection nor number of simulation
run during experiments

= Lack of evaluating classifiers based on attack type

55



Frans Hendrik Botes, Louise Leenen and Retha De La Harpe

= Poor evaluation techniques - no consideration of performance or cost overheads

The experiment cycle (Figure 3) used to test the ATM classifier in ID has been designed in order to overcome the
limitations and flaws in previous studies targeting the combined domains.

20% NSL-KDD

Prepare | Feature . Classifier o Experiment run
Datasets Selection initialisation o

Results analysis

Par Attack Type

Figure 3: Experimental process

4.1 Datasets

The NSL-KDD dataset (Tavallaee et al., 2009) improves upon the popular KDD99 dataset. Due to the significant
number of improvements, the NSL-KDD dataset was selected for training and testing the ATM classifier. It is
important to classify each segment of the dataset used for specific purposes:

=  Training dataset — Based on the NSL-KDD 20% training dataset, used to train the ATM classifier.

=  Validation dataset — Based on the NSL-KDD 20% training dataset split into two parts, 66% training only and
34% validation (unseen). The dataset was used to validate the parameters for the classifier.

= Test dataset — NSL-KDD Test 21 dataset was used for test purposes as it features unknown attacks and
therefore increases realism. Unlike other test datasets the Test21 specifically excludes easy detectable
attacks and therefore bounds the performance to 65% (Tavallaee et al, 2009).

The datasets were also pre-processed by using feature-coding; categorical feature encoding was used to change
the categories to numeric values, and the nominal fields will then be represented in numeric categories instead
of text. Nominal fields represent certain classes or categories e.g. TCP, ICMP or UDP, hostnames, http, or echo
etc. After the feature-coding process, the dataset had the features as displayed in Table 1. The datasets used in
this research are available at http://github.com/FransHBotes/NSLKDD-Dataset.

The NSL-KDD dataset contains the following attack classes:

= In Probe attacks the intruder scan the system for vulnerabilities scoping the network, hardware and
software in order to identify potential vulnerabilities to be exploited.

= User to Root (U2R) attacker tries to gain administrative (root) access to the system by exploiting
vulnerabilities.

= Remote to Local (R2L) attacker tries to obtain local access across a network connection.
= Denial of Service (DOS) attacks tries to interrupt and cripple services on a host.

The classification task was only binary: normal or intrusive. Each attack class was split to evaluate the classifier
per attack class and build an ensemble model.

Table 1: Features within NSL-KDD dataset

# Description # Description # Description # Description
1 Duration 12 su_attempted 23 srv_serror_rate 34 dSt—hOSt—S;\i;diff—hOSt—r
2 src_bytes 13 num_root 24 rerror_rate 35 dst_host_serror_rate
3 dst_bytes 14 num_filss_creatio 25 srv_rerror_rate 36 dst_host_sr\e/_serror_rat
4 Land 15 num_shells 26 same_srv_rate 37 dst_host_rerror_rate
5 wrong_fragment 16 | num_access_files | 27 diff_srv_rate 38 | dst_host_srv_rerror_rate
6 Urgent 17 num_ort;t::)und_c 28 srv_diff_host_rate 39 protocol_type
Hot 18 is_host_login 29 dst_host_count 40 service
8 num_failed_logins 19 is_guest_login 30 dst_host_srv_count 41 flag
9 logged_ in 20 Count 31 dst_host_saeme_srv_rat
10 | num_compromised | 21 srv_count 32 | dst_host_diff_srv_rate
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# Description # Description # Description # Description
11 root_shell 22 serror_rate 33 dst_hostzs?;r;:_src_por

4.2 Feature selection

Feature selection extracts statistically relevant features from the datasets. We used the information gain and
ranker feature selection method. The information gain evaluates the statistical significance of each feature
based on the reduction of entropy after a dataset is split at that feature. The ranker method then ranks which
features should be low rank or high ranked according to the feature selected. In most cases, all features with
less than 1% information gain were removed from the feature-selected datasets. Table 2 summarises the
features selected for each attack type and the full 20% training dataset. We used the WEKA toolkit (Hall et al.,
2009). After the relevant features for each attack type were established, the datasets were trimmed to only
include those highlighted during the feature selection process.

Table 2: Features selected for training ATM

Training Dataset Features Selected
Probe 2,40, 3, 30, 34,9, 33, 32, 31, 38, 37, 41, 24, 25, 29, 39, 20, 26, 28, 27,21, 22,35, 1, 36
U2R 11,40, 7, 30, 10, 29, 14,1, 33, 21,6, 13,9,41,39,19, 4
R2L 2,40, 3,30,7,33, 34, 21, 20, 29, 19, 28, 32,39, 1, 36, 31,41, 8,9, 35,27,11,4
DOS 2,27,26,41, 40, 3, 20, 36, 35, 31, 32, 22, 23, 30, 9, 34, 29, 33, 21, 28, 38, 39, 1, 37, 24, 25
20% Training 2,40, 3, 41, 27, 26, 30, 31, 32, 35, 9, 36, 22, 20, 23, 34, 29, 33, 28, 21, 38, 39, 24,37, 25,1

4.3 Evaluation techniques

Two techniques, performance metrics based on a confusion matrix and a cost evaluation taking account several
factors, were chosen to validate the classifier’s performance.

4.3.1 Performance metrics

Each event classified by the classifier can have four possible outcomes as illustrated in the confusion matrix in
Table 3. Wu and Banzhaf (2010) stated that the effectiveness of an IDS should be evaluated by their ability to
give correct classifications; they indicated most known performance metric as the Detection Rate (DR) with the
False Alarm Rate (FAR), and that IDSs should have a high DR and low FAR.

Table 3: Confusion matrix (TP=true positive, FN=false negative, FP=false positive and TN = true negative)

Actual Class Predicted Class
Attack | Normal
Attack TP FN
Normal FP TN

On its own, the confusion matrix does not really represent any usable metrics to evaluate the IDS. Other
important measures are (Wu & Banzhaf, 2010):

DR =TP /(TP +FN) (1)

FAR = ———=1—~TN /(TN + FP) (2)

Error rate = (FP + FN) /(TP + TN + FP + FN) (3)

Accuracy =TN +TP /(TN + TP + FN + FP) (4)

Eooacure = 2 X (TP/(TP + FP)) x (TP/(TP + FN) (5)
(TP/(TP + FP)) + (TP/(TP + FN))

The FAR refers to the number of normal instances classified as attacks, whereas the error rate numerates the
number of incorrect predictions in total. The F-measure indicates the accuracy of a test by numerating a balance
between the precision and recall. It is useful when test datasets are used, especially with unbalanced datasets.
Unbalanced datasets tend to have a high accuracy and a low error rate but high FAR, by favouring the most
common class (Weng & Poon, 2008). In these cases, the F-measure is considered to be superior. The accuracy
rate is appreciated when training and test data are shared (Tavallaee et al., 2010).
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4.3.2 Cost evaluation

Axelsson (2000) iterated the importance of computational complexity in ID, drawing specific focus to the
resources, storage and specifically time (can it perform in real-time). Our aim is to establish ATM as a classifier
for ID, either real-time or offline. The core of our cost analysis is the result in the time and complexity of the
constructed DTs. The time in seconds as a comparison result may be irrelevant due to different computer setups
(Tavallaee et al., 2010). We argue that transparent design motivates reproducibility for use as an evaluation
technique. Ling, Yang, Wang, et al. (2004) emphasized that less leaf nodes result in reduced cost in DTs. The time
taken to construct the decision tree is also a consideration.

The quality of the decision tree is based on the relationship between training examples and the error rate, in
ATM it influences the amount of pheromone required to produce the model (Otero et al., 2012). A high quality
tree uses more pheromone. Our cost score follows (lowest score represents best cost):

€S = (log(LN) X =)/(1 = TQ) (6)
with LN = total number of leaf nodes within the model, T = the time taken to build in seconds, and TQ = total tree quality for
the DT.

4.4 Classifier initialization

The main purpose this study was to experiment with the ATM classifier applied in the ID domain. The java
binaries can be obtained from the project myra github repository (Otero, 2015). Version 4.1 of the Ant Tree
Miner classifier was used with tuning of the following parameters:

= Colony Size (cs) - number of artificial ants within each colony
=  Max Iterations (mi) — iterates until a global-best tree is found or mi is reached
= Evaporation Factor (ef) - factor to which pheromone will evaporate for each entry in the pheromone matrix

The optimal parameters for the classifier are identified by performing a validation experiment cycle, using the
validation datasets. Increasing the parameters will not improve performance or accuracy much as indicated by
Otero et al. (2012): a colony size of 5 and evaporation factor of 0.9 performs slightly better than other
combinations, and on average 200 iterations were performed until the classifier converges. Several versions of
the ATM were experimented with, each with different settings in an attempt to tune the parameters. Table 4
summarizes the parameters, and Table 5 shows the results. Each experiment was performed 10 times and the
results averaged for analysis.

Table 4: ATM validation experiment parameters

Parameter ATM -df | ATM —cs | ATM-ef | ATM-mi | ATM - op
Colony Size 5 2 5 5 2
Max Iterations 200 200 200 50 150

Evaporation Factor 0.9 0.9 0.3 0.9 0.9

Table 5: ATM validation experiment results

Evaluation DF CS EF Ml oP

Error Rate 0.50% 0.65% 0.48% 1.63% 0.95%
Accuracy 99.50% | 99.35% | 99.52% | 98.37% | 99.05%
DR 99.75% | 99.60% | 99.72% | 98.76% | 99.36%
FAR 0.00789 | 0.00939 | 0.00714 | 0.02074 | 0.01312
Tree Quality | 99.24% | 99.13% | 99.13% | 98.11% | 98.82%
Leaf Nodes 197.40 165.00 215.10 115.70 130.40

Runtime (s) 295.08 98.46 489.98 65.05 76.99
F-measure 1.00 0.99 1.00 0.98 0.99
Cost 1477.21 | 419.60 | 2200.97 | 118.33 230.41

ATM — DF designates the default parameters for the ATM classifier as selected by Otero et al. (2012).
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The ATM — op version was considered the optimal parameter based on the results. The results revealed that
reducing the colony size vastly reduces the classifier cost while only slightly affecting accuracy. Reducing the
colony size favors the reduction of leaf nodes. The results contradict evaluations by Rami and Panchal (2012)
who showed an increase in the colony size decreased the accuracy. Decreasing the evaporation factor builds
more accurate classifiers, but does not warrant the significant increase in cost, as this increases the amount of
pheromone used. When the maximum iterations are decreased, the accuracy slightly declines, however with
exceptional reduction in cost, the parameter will influence the runtime significantly. However, Rami and Panchal
(2012) noted the accuracy decreased using the ATM classifier whenever the number of iterations reached 1000,
thus supporting the search for optimal parameters based on lowering the values.

4.5 Experiment setup

Tavallaee et al. (2010) highlighted the concerns and unreliability of evaluating classifiers without unseen data.
With the experiment run two cycles where performed. The first cycle focus on the classifier’s ability to classify
the full NSL-KDD dataset, whereas the Train 20% and Test21 dataset were used.

The second cycles digs deeper, peeking into the classifier’s ability to detect each attack on its own. Each
experiment cycle was performed 10 times and the results averaged for analysis. The experiments were
performed on a Lenovo Ideapad 510s, Windows 10, an Intel Core i5-6200U processor and 8GB DDR4 ram.

5. Results and discussion

Our results are scrutinized per experiment cycle performed. We have highlighted the significance of conducting
reliable, reproducible and transparent research. Several studies on classifiers in ID promise detection and
accuracy rates of over 99%, but this needs to be considered in the context of how the experiments were
performed. Without applying the basic principles these studies have become almost impossible to replicate or
compare. There is a definitive issue within the cross domain research areas to provide comparable results, and
this statement is supported by Tavallaee et al. (2010) and Sommer & Paxson (2010). Whilst creating the NSL-
KDD dataset Tavallaee et al. (2009) also experimented with several classifiers on their Test21 dataset. We can
compare the Test21 results with the FULL and FULLFS results obtained: in the results from the validation and
test cycles, the high accuracy rates are significantly reduced, as the Test21 dataset includes hard to detect
attacks (Tavallaee et al., 2009). This explains the significant drop in accuracy across the board.

Cases where cross-validation or the split of a training dataset (as with the validation dataset) are not comparable
due to the selection process involving an essence of randomness when the test datasets were created. Table 6
summarises the results obtained from the experiments run using the ATM — op version (FS denotes the feature
selected experiments performed; ATMa Per Attack represents the results from training the ATM per attack type
and then combining each prediction model, tree quality and leaf nodes are averaged).

Table 6: ATM results on NSL-KDD Test21 dataset

Evaluation FULL | FULL | DOS DOS | Probe | Probe | R2L | R2L | U2R | U2R | ATMa
FS FS FS FS FS Per
Attack
Error Rate (%) | 39.72 | 39.06 | 24.99 2489 | 21.99 | 22.63 | 52.10 | 51.56 | 7.99 | 831 | 35.15
0,
Accuracy (%) | ¢0 28 | 6004 | 7501 | 7511 | 78.01 | 77.37 | 47.90 | 48.44 921‘0 9;‘6 64.85
0,

DR (%) 84.94 | 8411 | 93.40 | 91.71 | 88.79 | 90.24 | 98.22 | 98.17 9%‘8 9%‘8 57.05
FAR (%) 45 44 34 33 32 34 91 90 92 96 0
Tree((;‘;a"ty 98.91 | 99.00 | 99.72 | 99.69 | 99.39 | 99.42 | 99.55 | 99.56 92'9 92‘9 99.64

0
Leaf Nodes 20; 1 153'2 83.10 | 96.20 | 63.50 10; 41 3520 | 2820 | 3.00 | 350 | 462
Runtime (s) 2461'4 23:'0 157.89 | 134.27 | 61.45 | 59.75 | 20.10 | 20.35 | 2.04 | 1.74 | 241.48
F-measure 044 | 044 | 071 071 | 079 | 079 | 062 | 063 | 096 | 096 | 0.73
Cost 852.6 | 875.7 | 1819.4 | 1419.4 | 3033 | 3475 | 1145 | 1106 | 17.6 | 17.2 | 1861.0
7 3 1 6 4 2 1 5 9 9 1
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5.1 KDD NSL-Test21 full discussion

Table 7 outlines the results of Tavallaee et al. (2009), evaluating several machine learning classifiers on their
Test21 dataset. The J48 DT employs the C4.5 split. Intuitively, RF and NB Tree can all be regarded as ensemble
methods i.e. a combination of classifiers or prediction models and marked * in Table 7. The ATM is however, not
truly an ensemble classifier, and comparisons should be done with novel algorithms such as J48, Random Tree,
SVM and M-Layer Perceptron. The ATMa which combines prediction models can be considered an ensemble
classifier and compared with other ensemble classifiers such as random forests or NB tree.

Table 7: Accuracy of several classifiers on Test21 dataset

Classifier Accuracy (%)
SVM 42.29
NB Tree* 66.16
Random forest * 63.26
M-Layer Perceptron 57.34
Random Tree 58.51
148 (DT) 63.97
ATM 60.94
ATMa* 64.85

With few applicable results to compare with the ATM’s performance, the classifier obtained more than
satisfactory results in classifying all attacks, considering only the accuracy. Excluding the ensemble classifiers,
the ATM obtains results only 3% lower than the traditional DT classifier and makes a very strong case as an
intrusion classifier by outperforming several other classifiers. Overall, the novel ATM ranks 4™ when compared
to other novel and ensemble classifiers. However, when we ensemble the classification models build from
training each attack type, the classifier scores 65% accuracy. The ensemble result is denoted as ATMa in Table 6
and 7. ATMa outperforms most classifiers and highlights vast potential for improving the ATM classifier by means
of ensemble techniques. The approach is similar to bagging, however instead of randomly sampling the dataset,
the ATMa classifies data based on the prediction models built from each attack type. The improvement in
accuracy comes at a cost due to the high tree quality and runtime. By ensembling the ATM the FAR rate is
reduced to 0%, the low detection rate of 57% raises another potential area for improvement. When compared
with the FULL results obtained the ATMa can be considered a better ID classifier.

5.2 Results per attack type

By splitting the datasets per attack type, the ATM faced a highly unbalanced dataset; this is supported by the
results when considering low error rates and high false alarm rates. Regrettably, comparative results split per
attack type, using the same training and test dataset, are scarce. The ATM obtained the best accuracy when
classifying U2R attacks (92.01% accuracy), with the highly unbalanced dataset the F-measure of 0.96 could be
considered a very good result. This is very significant since U2R attacks are considered to be exceptionally
dangerous. Revathi and Malathi (2014) experimented with detecting U2R attacks using the NSL-KDD dataset,
and their Multi-layer perceptron obtained the highest result with 88.46% accuracy. They however failed to
mention which training and test datasets were used. The ATM’s ability to detect DOS and Probe attacks could
be considered favourable, as this includes the lowest percentage of FAR with high DR over 90%. The accuracy of
78% can also be considered to be good. It is important to keep in mind that the Test21 dataset only includes
attacks that are hard to detect. Noureldien and Yousif (2016) evaluated the accuracy of various machine learning
techniques to detect DOS attacks, using the Train20% and Test21 NSL-KDD datasets. The ATM classifier
outperforms the J48 DT classifier in detecting DOS attacks, by 3%. In general, we note the ATM classifier
performs better when split between each attack type than tasked with detecting all types of attacks.

6. Conclusion and future research potential

In this paper, the ATM classifier has been successfully implemented in the ID domain. The results obtained are
satisfactory and among the top percentile when compared with several other classification techniques. The
results revealed by training the classifier per attack type and then ensemble the individual classification models,
outperforms most classifiers when compared with result obtained by Tavallaee et al. (2009). Our ensemble
ATMa was able to classify attacks with 65% accuracy, with a FAR rate of 0%. This shows vast potential for
implementing ensemble techniques with the ATM classifier. This study also supports the fact that DT based
classifiers are still among the best to use in ID. The use of a new cost metric to analyze the ATM classifier allows
a baseline for further experiments, especially improved versions of the classifier. The cost formula is specifically

60



Frans Hendrik Botes, Louise Leenen and Retha De La Harpe

tailored to the ATM classifier and has shown usefulness when performing validation experiments. The
contradicting results found in evaluating the parameters highlights a need for further investigation, specifically
including some affinity to the costs. The high quality processes with regards to comparability, transparency and
reproducibility within the experiments instantly vanquishes the current academic issues found in similar
research. Even though the ATM classifier shows favorable results, from an intrusion detection perspective the
classifier will be better for signature based detection, this statement is supported by the disparity between
validation and Test21 dataset results. We argue that the ATM will be very apt as it shows high accuracy, and low
FAR rates during the validation experiments. Several avenues for future research emerged. Albayati and Issac
(2015) noted DT perform better when tasked with large datasets, the ATM classifier was limited to training on
only 20% of the full NSL-KDD dataset. Chennupati (2014) highlighted the instability of the ATM classifier and
applied the bagging ensemble method to significantly improve accuracy and reduce error rates. Our own ATMa
improved the accuracy by combining the prediction models from each attack type model, similar to the bagging
approach. With a baseline for ATM within ID established, it is evident that other future research should involve
applying ensemble methods on the ATM classifier specifically in intrusion detection. In general, the
implementation and results are very good when compared with other well-known methods such as DT, SVM
and Multi-layer perceptron.
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