Sensors and Actuators B: Chemical

Facile synthesis of improved room temperature gas sensing properties of TiO₂ nanostructures: Effect of acid treatment

Z.P. Tshabalala^{a,b,} D.E. Motaung^{a,*,*} G.H. Mhlongo^{a,*,*} O.M. Ntwaeaborwa^{b,*}

Abstract

TiO₂ nanoparticles were synthesized via a simple hydrothermal method in a sodium hydroxide (NaOH) aqueous solution and washed with distilled water and different concentrations of hydrochloric acid which acted as the morphological/crystallographic controlling agent. Microscopy analysis showed that the size of the TiO₂ nanoparticles could be easily tailored and tuned by varying the HCl concentration. The phase transformation from a mixture of anatase and rutile phases to pure anatase phase was observed at higher HCl concentration. The particle sizes were reduced while the Brunauer-Emmett-Teller surface area increased when increasing the HCl concentration, thus resulting in higher sensing response and selectivity to NO₂ at room temperature. The X-ray photoelectron spectroscopy, photoluminescence and electron paramagnetic resonance studies also revealed that the 1.0 M sample contain high relative concentration of oxygen vacancy and Ti⁴⁺ and Ti³⁺ interstitial defect states which played a vital role modulating the sensing properties.

^a DST/CSIR, National Centre for Nano-structured Materials, Council for Scientific Industrial Research, Pretoria 0001, South Africa

^b Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300, South Africa