
Investigating Multi-Thread Utilization as a Software
Defence Mechanism Against Side Channel Attacks

Ibraheem Frieslaar
∗

Council for Scientific and Industrial Research
Modelling and Digital Sciences

Pretoria, South Africa
ifrieslaar@csir.co.za

Barry Irwin
Rhodes University

Computer Science Department
Grahamstown, South Africa

b.irwin@ru.ac.za

ABSTRACT
A state-of-the-art software countermeasure to defend against
side channel attacks is investigated in this work. The im-
plementation of this novel approach consists of using multi-
threads and a task scheduler on a microcontroller to pur-
posefully leak out information at critical points in the cryp-
tographic algorithm and confuse the attacker. This research
demonstrates it is capable of outperforming the known coun-
termeasure of hiding and shuffling in terms of preventing the
secret information from being leaked out. Furthermore, the
proposed countermeasure mitigates the side channel attacks,
such as correlation power analysis and template attacks.

CCS Concepts
•Security and privacy → Side-channel analysis and
countermeasures;

Keywords
Software Countermeasure, Side Channel Attacks,
Multi-Threading, Electromagnetic

1. INTRODUCTION
It has been many years since Kocher et al. [11] introduced

side channel analysis (SCA) as a means to obtain secret
information from an embedded device. This method is still
in widespread use today [18, 20]. Different cryptographic
algorithms have been attacked over the years, such as DES
[14], RSA [7], and AES [17].

The need to provide individuals with a sense of secu-
rity assurance has become prominent. Therefore, many ap-
plications offer a form of cryptographic security to ensure
their data is confidential and secured. Although the crypto-
graphic algorithms are secured, the implementation of these
algorithms on an embedded device could be vulnerable to
SCA attacks. SCA attacks exploits the power consumption

∗Studies at Rhodes University through a CSIR studentship.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

or the electromagnetic emissions [8] to retrieve secret infor-
mation by finding a correlation between the intermediate
values and the power consumption [11].

Since the National Institute of Standards and Technology
(NIST) has declared AES the standard protocol to encrypt
information, the research community has focused extensively
on attacking AES implementations on various devices [3, 12,
17, 19].

The design of a software countermeasure is extremely chal-
lenging due to microcontroller hardware leaking out infor-
mation as opposed to the software countermeasure leaking
out sensitive information. Furthermore, the average soft-
ware developer does not possess all the knowledge about an
embedded device and this could lead to unintentional side
channel leakage.

This work takes advantage of the fact that most com-
mercial microcontrollers leak out information during normal
operations, and turns it into a strength by using multiple
threads and a task scheduler to purposely leak out obfus-
cated information at critical points in the AES-128 algo-
rithm to defend against a side channel attacks. The task
scheduler would control the number of threads to generate
these leakages and enable the microcontroller to have a dif-
ferent power trace on each execution of the cryptographic
algorithm. Furthermore, this research is compared to an ex-
isting software countermeasure as the success rates of both
countermeasures are compared against two different types
of side channel attacks.

The remainder of this paper is organized as follows: the re-
search carried out in the area of developing software counter-
measures against SCA will be discussed in Section 2; Section
3 will define the proposed countermeasure; the techniques
and equipment used in this research will be elaborated in
Section 4; followed by the results and analysis in Sections 5;
finally, the paper is concluded in Section 6.

2. SOFTWARE COUNTERMEASURES
The most prominent existing software countermeasure tech-

niques will be discussed in this section. A few of these tech-
niques are known as random precharging, masking, hiding
and shuffling. Random precharging can be carried out at
a software level by flooding the datapath with a random
operand instruction before and after an important value is
used [21].

A well known approach to defend against SCA is mask-
ing [5]. This approach involves removing the correlation
between the intermediate values and the power consump-
tion of the device. To achieve masking, many masking tech-

niques are available such as: Boolean [5]; additive [9]; and
multiplicative [10] masking. Boolean masking uses an XOR
operation between the sensitive variables (a) and random
numbers (r) to generate a variable mask am = a⊕ r. The
original value is returned by applying the same XOR on that
mask. The additive and multiplicative masks use the equa-
tions (am = a+r mod n) and (am = a∗r mod n), respectively,
to mask the secret information.

The hiding countermeasure aims to reduce the correlation
between the intermediate variables and its power consump-
tion. This is achieved by adding dummy instructions at
critical locations in the algorithm, making use of a variable
clock frequency or having random delays in the algorithm.
Furthermore, shuffling of the sensitive values can be used as
a hiding countermeasure. These methods can be combined
with each other to from a resistance to SCA attacks. The re-
sistance is calculated by the number of possible occurrences
the subkey can occur at, in a specific location in time on
the power trace. An example of combining methods is the
insertion of dummy instruction and shuffling of the AES sub-
keys. An example of combining methods are the insertion of
dummy instruction and shuffling of the AES subkeys. This
research will compare the implementation of the hiding and
shuffling technique against the proposed countermeasure.

3. PROPOSED COUNTERMEASURE
The proposed countermeasure will be discussed in this

section. It is intended to improve on the basic hiding and
shuffling countermeasure by introducing multi-threads and
a task scheduler as a new software countermeasure. Further-
more, this novel approach will aim to incorporate the basic
countermeasure into its design.

This research implemented the AVR Thread Library [6]
as the multi-thread framework. This library was chosen
since it was designed to work with Atmel AVR family of
microcontrollers. The library consists of having basic pre-
emptive multitasking and implements a simple round-robin
style task switcher. It was originally designed to work with
the previous generation of Atmel microcontrollers. There-
fore, it has been modified and recompiled to work for the
Atmega328p MCU and current generation of Atmel AVR
microcontrollers. It is noted that the implementation of
multiple threads as a countermeasure has the capabilities
of being used on other microcontrollers that has dedicated
support for multi-thread operations.

The design of the system would allow the AES-128 algo-
rithm to be executed on one thread. This will be known as
the encryption thread. While the encryption thread is pro-
cessing, many other threads would start to execute. These
other threads are known as noise threads. These noise threads
comprise of dummy mathematical instructions. Based on
the related work these noise threads would be executed at
the S-boxes. Furthermore, on each execution of the code, the
noise threads would randomly change based on the dynamic
power consumption produced by the task scheduler.

In order to determine the number of threads to be used
per execution, the system would randomly select a number
(x) between 0 – 15. This x value would be used to generate
noise threads at random subkeys y[x]. Each y[] array value
had been randomised to ensure on each execution that the
noise threads would occur at different locations. It is noted
that a checking method is in place to prevent the y[] array
values from being the same. Therefore, a dynamic power

trace would be generated per execution.
Various types of noise threads are used to increase the

resistance to an attack. A noise thread has the ability of
executing a different set of mathematical instructions. An
example of such a noise thread is the implementation of
greatest common divisor (GCD). It is possible to place more
than one noise thread at a subkey. Therefore, if multiple
noise threads were placed at a subkey the system would be
capable of hampering attackers that make use of low cost
equipment.

Before the countermeasure was placed onto the MCU a
value (y) was stored into the EEPROM. Once the counter-
measure was in place, it would call this value from memory
and use it to change the random seed value on each execution
of the algorithm. Upon completion of the S-box procedure,
y would be incremented, XOR’D and the value would get
stored back into memory to be used for the next execution.
This generates more confusion since y is XOR’D and gets
passed through the same S-box as the AES-128 algorithm.
The next procedure is to combine the shuffling technique
into the new system

4. EXPERIMENT SETUP
This section has been divided into three subsections as fol-

lows. The equipment used in this research will be discussed
in Subsection 4.1, Subsection 4.2 will explain side channel
attacks and Subsection 4.3 will detail the experimental setup
and the experiments carried out.

4.1 Equipment
In order to capture data from a microcontroller the re-

search makes use of the ChipWhisperer kit [16]. This kit is
well suited to carry out SCA attacks. The kit consists of four
main items which is a target device, measuring equipment,
capturing software, and attack software. The ChipWhis-
perer uses a field-programmable gate array (FPGA). The
FPGA is the ZTEX FPGA Module which uses a Spartan 6
LX25 FPGA [22]. Using the ChipWhisperer the attacker is
able to use synchronous sampling. It has been shown that
synchronising the clock at 96 MS/s would give the same re-
sults as using an asynchronous sampling rate of 2 GS/s [15].
Furthermore, using a synchronised clock provides a very re-
peatable power consumption as seen in Figure 1. The figure
illustrates that all traces are very similar to each other, due
to synchronously captured power traces.

Figure 1: 10 traces captured using a synchronised
clock.

The ChipWhisperer Lite had been used to capture data
from the Atmel ATmega328p MCU. The MCU forms part
the Atmel 8-bit microprocessors family. They offer vari-
ous functionality such as on-chip Flash, SRAM and internal
EEPROM memories [2]. It has been shown that Atmel’s
MCUs have been used in various scientific research and in
industrial applications [13].

The capturing software allows for the preprocessing of the
power traces. The software makes provision for sampling the
device at four times its original clock speed, this improves
the interpretation of the power consumption. The variables
that remained consistent in the experiments are as follows:
a low gain setting was used with the digital signal ampli-
fied by 34.5039 decibel (dB); the rising edge logic level is
used to trigger the capture of power traces; and finally, the
clock frequency was multiplied to rise from 7.375 MHz to a
frequency of 29.5 MHz. These set variables assisted in in-
creasing the power output. Furthermore, all measurements
were captured synchronously.

Figure 2 depicts a comparison between preprocessing and
trace processing of traces. From the figure it is seen that the
bottom power trace is more defined than that of the power
trace above with no processing. Additionally, Figure 3 il-
lustrates a comparison between capturing at 7.38 MHz and
29.5 MHz. It is observed that at 29.5 MHz the power con-
sumption is more stable than at 7.38 MHz. This is further
evident when observing from points 3000 onwards.

Figure 2: Comparison between capturing with no
processing and with processing.

4.2 Attack Procedure
This research makes use of the coreelation power analy-

sis (CPA) and template attack to retrieve the secret keys
of the cryptographic implementation of AES-128 on a mi-
crocontroller. It has been well documented that the Differ-
ential Power Analysis (DPA) is outperformed by the CPA
[3]. The DPA technique requires thousands of power traces
to retrieve the secret key whereas the CPA approach only
requires a few traces. In this research it was shown that
only 1550 traces were needed to retrieve the correct secret
key using the CPA method. Therefore, in terms of speed
the CPA approach is much faster and more accurate since
it looks at the correlation between all the key guesses.

Template attacks are probabilistic side channel attacks.
It makes use of a Gaussian noise model and the maximum
likelihood principle to reveal the secret information from the

Figure 3: Comparison between capturing at 7.38
MHz and 29.5 MHz.

leakages [1]. This attack is used since it is able to obtain
secret information from countermeasures whose security is
dependent on the assumption that an attacker is unable to
obtain more than one or a limited amount of samples [4].

4.3 Experiments
This subsection elaborates on the experimental setup used

in this research. The setup procedure to recover the secret
key of the cryptographic algorithm comprises of two stages.
These two stages are the capture data and analysis data
phase.

The capture data phase comprised of using the embed-
ded MCU. The PCB board which contains the Atmega328p
MCU, is referred to the device under test. The ChipWhis-
perer was connected to the device under test. In order to
capture Electromagnetic (EM) emanations the ChipWhis-
perer was connected to a low noise amplifier which intern
was connected to an EM probe. The probe was placed over
the Atmega328p processor. Figure 4 illustrates the hardware
setup.

Figure 4: the hardware setup: On the left, the Chip-
Whisperer connected to the PCB containing the At-
mega328p processor; A low noise amplifier is con-
nected to an EM probe placed on the processor.

The first set of experiments was to determine the break-
ing point of an unprotected implementation of the AES-128
algorithm. The AES-128 program was flashed onto the At-

mega328p. While the Atmega328p was executing the crypto
code, EM emanations was captured via the EM probe and
ChipWhisperer. Upon acquiring the EM data, the CPA at-
tack was carried out against it.

The second experiments involved making use of the tem-
plate attack. The attack consisted of a two step data collec-
tion setup. Firstly, the secret key and text used as input are
set to random on each occasion the Atmega328p executed
the crypto code. This random set captured was used as the
training set to generate a template. The second step was to
capture the EM emanations again. However, on this occa-
sion the secret key was set to a fixed value. This secondary
data required a few input traces and was the testing set.

Experiments three and four consisted of implementing the
countermeasures into the AES-128 algorithm. The hiding
and shuffling, and the threaded countermeasure was used.
Both implementations was tested against the CPA and tem-
plate attacks.

5. RESULTS AND ANALYSIS
The results of the experiments explained in Subsection 4.3

are examined in this section. The first experiment is anal-
ysed in order to achieve a baseline for CPA attacks. Observ-
ing Table 1, it consists of three columns. The first column
indicates the number of traces used, followed be the num-
ber of secret keys recovered, and finally, the third column
represents the success rate. The success rate is calculated
by the total number of subkeys (16) divided by the number
of recovered keys. The table indicates that it is possible to
recover the entire secret key as EM emanations is used as
input data. Furthermore, only 1550 traces is required to
carry out a successful CPA attack with EM data.

Table 1: CPA results against an unprotected imple-
mentation of AES-128.

Traces Recovered Keys Success Rate
410 9 0.5625
450 10 0.625
480 12 0.75
1050 14 0.875
1550 16 1

Table 2 depicts the results of the template attack against
an unprotected AES-128 implementation while the EM em-
anations are collected as input data. The table setup is the
same as Table 1 and the success rate is calculated in the
same manner. From the table it is seen that the entire se-
cret key is able to be recovered. Only 383 input samples is
required when 50 000 samples is used as training samples.

Table 2: The results of a template attack using 50
000 traces as training input

Traces Recovered Keys Success Rate
88 9 0.5625
100 10 0.625
123 12 0.75
286 14 0.875
383 16 1

Experiment three results is examined in Figure 5. The
figure displays a comparison between the results of the CPA
attacks as the unprotected implementation, known counter-
measure, and proposed countermeasure is used. It is seen

that as the hiding and shuffling countermeasure is in place
the entire secret is recoverable. However, 63 450 traces is
needed. Furthermore, a success rate below 0.2 is achieved
as the proposed countermeasure is in place. This relates to
only three subkeys being recoverable. Additionally, almost
80 000 traces is required to only recover three subkeys.

Figure 5: A comparison between the success rate
of the CPA attack against the different implemen-
tations.

Experiment four results is depicted in Table 6. The table
illustrates the success rate as the template attack is carried
out against the AES-128 implementation with the various
implementations in place. Both countermeasures prevents
the recovery of the entire secret key. Although, both coun-
termeasures is successful, the multi-thread countermeasure
success rate for template attacks is less than that of the
hiding and shuffling countermeasure. Therefore, the multi-
thread countermeasure outperforms the hiding and shuffling
countermeasure in terms of preventing more information
from being leaked.

Figure 6: The success rate of the template attack
with 50 000 training samples against the various im-
plementations.

The research is able to successfully obtain the secret key
on an unprotected device using less than 1600 power traces
as input for a CPA attack and is further able to successfully
recover the secret key using a template based attack.

The proposed countermeasure demonstrated the ability
to prevent the CPA attack from predicting the correct key
as oppose to the known countermeasure of hiding and shuf-
fling which fails to prevent critical information being leaked
out as the CPA attack is used. Furthermore, the proposed

countermeasure is able to defend well against the template
attacks. It is shown that the template attack achieved a
success rate below 0.2. The implementation of a task sched-
uler and multi-threads allows for the creation of dynamic
power traces and these dynamic power traces cause both
side channel attacks to predict the incorrect secret key.

6. CONCLUSION AND
ONGOING RESEARCH

In this research a state-of-the-art software countermea-
sure was introduced to mitigate side channel attacks. The
implementation consists of using multi-threads and a task
scheduler as a novel approach to defend against attacks.
These multi-threads are comprised of various mathemati-
cal operations to generate noise at various points in time in
the AES-128 algorithm. This approach introduces dynamic
power traces, where the power traces are changed based on
the task schedulers conditions. It is demonstrated that this
novel countermeasure outperforms an existing countermea-
sure of hiding and shuffling against two different types of
attacks.

This work sets the basis for the forthcoming research where
this approach would be implemented and tested on a true
multi-threading platforms, such as smartphones and lap-
tops. Moreover, the research aspires to implement a coun-
termeasure capable of defending embedded hardware and
high-powered devices against known and future side chan-
nel attacks.

Acknowledgement
This work was undertaken as part of the Distributed Mul-
timedia CoE at Rhodes University, with financial support
from the department of Modelling and Digital Science at
CSIR, Telkom SA, Tellabs/CORIANT, Easttel, Bright Ideas
39, THRIP and NRF SA (UID 90243). The authors ac-
knowledge that opinions, findings and conclusions or recom-
mendations expressed here are those of the author(s) and
that none of the above mentioned sponsors accept liability
whatsoever in this regard.

7. REFERENCES
[1] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J.

Quisquater. Template attacks in principal subspaces.
In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 1–14. Springer, 2006.

[2] Atmel. ATxmega128D4., Nov. 2015.

[3] E. Brier, C. Clavier, and F. Olivier. Correlation power
analysis with a leakage model. In Cryptographic
Hardware and Embedded Systems-CHES 2004, pages
16–29. Springer, 2004.

[4] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks.
In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 13–28. Springer, 2002.

[5] J.-S. Coron and L. Goubin. On boolean and
arithmetic masking against differential power analysis.
In Cryptographic Hardware and Embedded
SystemsŮCHES 2000, pages 231–237. Springer, 2000.

[6] D. Ferreyra. AVR development., Nov. 2008.

[7] T. Finke, M. Gebhardt, and W. Schindler. A new
side-channel attack on RSA prime generation. In
Cryptographic Hardware and Embedded Systems-CHES
2009, pages 141–155. Springer, 2009.

[8] K. Gandolfi, C. Mourtel, and F. Olivier.
Electromagnetic analysis: Concrete results. In
Cryptographic Hardware and Embedded
SystemsŮCHES 2001, pages 251–261. Springer, 2001.

[9] L. Genelle, E. Prouff, and M. Quisquater. Thwarting
higher-order side channel analysis with additive and
multiplicative maskings. In Cryptographic Hardware
and Embedded Systems–CHES 2011, pages 240–255.
Springer, 2011.

[10] J. D. Golić and C. Tymen. Multiplicative masking and
power analysis of AES. In Cryptographic Hardware
and Embedded Systems-CHES 2002, pages 198–212.
Springer, 2002.

[11] P. Kocher, J. Jaffe, and B. Jun. Differential power

analysis. In Advances in CryptologyŮCRYPTOŠ99,
pages 388–397. Springer, 1999.

[12] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi.
Introduction to differential power analysis. Journal of
Cryptographic Engineering, 1(1):5–27, 2011.

[13] W. Kunikowski, E. Czerwiński, P. Olejnik, and
J. Awrejcewicz. An overview of ATmega AVR
microcontrollers used in scientific research and
industrial applications. Pomiary, Automatyka,
Robotyka, 19, 2015.

[14] S. Mangard, E. Oswald, and T. Popp. Power analysis
attacks: Revealing the secrets of smart cards,
volume 31. Springer Science & Business Media, 2008.

[15] C. O’Flynn and Z. Chen. A case study of side-channel
analysis using decoupling capacitor power
measurement with the OpenADC. In Foundations and
Practice of Security, pages 341–356. Springer, 2012.

[16] C. O’Flynn and Z. D. Chen. Chipwhisperer: An
open-source platform for hardware embedded security
research. In Constructive Side-Channel Analysis and
Secure Design, pages 243–260. Springer, 2014.

[17] C. O’Flynn and Z. D. Chen. Side channel power
analysis of an AES-256 bootloader. In Electrical and
Computer Engineering (CCECE), 2015 IEEE 28th
Canadian Conference on, pages 750–755. IEEE, 2015.

[18] P. Pessl and S. Mangard. Enhancing side-channel
analysis of binary-field multiplication with bit
reliability. In Topics in Cryptology-CT-RSA 2016,
pages 255–270. Springer, 2016.

[19] K. Schramm, G. Leander, P. Felke, and C. Paar. A
collision-attack on AES. In Cryptographic Hardware
and Embedded Systems-CHES 2004, pages 163–175.
Springer, 2004.

[20] H. Seuschek, J. Heyszl, and F. De Santis. A
cautionary note: Side-channel leakage implications of
deterministic signature schemes. In Proceedings of the
Third Workshop on Cryptography and Security in
Computing Systems, pages 7–12. ACM, 2016.

[21] S. Tillich and J. Großschädl. Cryptographic Hardware
and Embedded Systems - CHES 2007: 9th
International Workshop, Vienna, Austria, September
10-13, 2007. Proceedings, chapter Power Analysis
Resistant AES Implementation with Instruction Set
Extensions, pages 303–319. 2007.

[22] ZTEX. Spartan 6 LX9 to LX25 FPGA Board., Nov.
2016.

