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 All sensors, WorldView-2, RapidEye and SPOT-6 performed satisfactory 17 

 Main causes for misclassification were wind events and estuarine water level changes 18 

Abstract  19 

This paper examines the value of very high resolution multispectral satellite imagery and 20 

LiDAR derived digital elevation information for classifying estuarine vegetation types. 21 

Satellite images used are from the WorldView-2, RapidEye and SPOT-6 sensors in 2m and 22 

5m resolution respectively, acquired between 2010 and 2014. Ground truthing reference is a 23 

GIS derived vegetation map based on field data from 2008. Supervised maximum likelihood 24 
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classification produced satisfactory overall accuracies between 64.3% and 77.9% for the 25 

SPOT-6 and the WorldView-2 image respectively, while the RapidEye-based classifications 26 

produced overall accuracies between 55.0 % and 66.8%. The reasons for the 27 

misclassifications are mainly based on the highly dynamic environmental conditions causing 28 

discrepancies between the field data and satellite acquisition dates rather than technical 29 

issues. Dynamics in water levels and salinity caused rapid change in vegetation communities. 30 

Further, weather impacts such as floods and wind events caused water turbidity and led to 31 

bias in the reflective properties of the satellite images and thus misclassifications. These 32 

results show, however, that the spatial and spectral resolution of modern very high resolution 33 

imagery is sufficient to satisfactory map estuarine vegetation and to monitor small scale 34 

change. They emphasize however the importance of synchronisation of ground truthing data 35 

with actual image acquisition dates in these highly dynamic environments in order to achieve 36 

high classification accuracies. The results also highlight the importance of ancillary data for 37 

accurate interpretation of observed classification discrepancies and vegetation dynamics. 38 

 39 

1. Introduction 40 

The St Lucia Estuary is part of the uMfolozi/uMsunduzi/St Lucia estuarine system which 41 

forms the largest fluvial coastal plain in South Africa (Van Heerden, 2011) and the largest 42 

estuarine system in Africa (155 000 Ha). As part of the iSimangaliso Wetland Park it hosts 43 

the highest biodiversity of wetland habitat types for its size in the whole of southern Africa 44 

(Cowan, 1999). Besides its tremendous value for biodiversity and nature conservation, this 45 

estuarine system also provides the basis for the regional economy such as commercial 46 

(sugarcane) crop production, subsistence agriculture, mining, tourism, commercial and 47 

subsistence forestry (GTI, 2010). While each of these activities benefits from the ecosystem 48 
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services of the estuarine systems, they also impact on the condition of the ecosystem in a 49 

combined cumulative way.  50 

The presence, abundance and condition of macrophytes, i.e. higher plants, can be used as 51 

indicators to determine the health of estuarine ecosystems (EPA, 2013). However, the paucity 52 

of spatial-temporal information on estuarine vegetation composition and distribution in South 53 

Africa currently undermines a holistic understanding of estuarine processes and functioning 54 

and subsequently the prediction of impacts of major environmental changes. Mapping of the 55 

estuarine vegetation would provide a baseline for understanding and monitoring of estuarine 56 

biological processes.  Remote sensing is widely viewed as an effective way to spatially-57 

continuous inventories of vegetation composition, distribution and condition, in particular in 58 

large and inaccessible areas in many regions of the world. 59 

However, in coastal and estuarine environments, the very small scale of the habitats, 60 

frequently occurring in narrow bands along the shore, prohibited the application of remote 61 

sensing until recently, as most of the satellite images successfully used in other environments 62 

did not provide enough spatial detail. Examples are the Landsat 4 to 8 series and the MODIS 63 

and NOAA AVHRR sensors.  64 

High and medium resolution data, namely aerial photographs, SPOT 3 and Landsat TM 65 

imagery have been compared by Harvey and Hill (2001) in the Northern Territory, Australia, 66 

to determine the accuracy and applicability of each data source for the detailed spectral 67 

discrimination of vegetation types in a tropical wetland. They found that aerial photos with a 68 

very high spatial resolution provided better classification accuracies than the SPOT and 69 

Landsat TM imagery. In accordance with this, Yang (2007) classified riparian vegetation in 70 

Australia with an accuracy of 81% using aerial photos, 63% using SPOT-4 imagery (10m 71 

resolution) and 53% using Landsat 7 imagery (30m resolution). He pointed out that the low 72 
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number of spectral bands is the limiting factor in using aerial photos for wetland vegetation 73 

classification, as is the coarse spatial resolution in the case of the Landsat imagery. 74 

Only with the recent availability of very high resolution (VHR) imagery e.g. from the SPOT-75 

6, RapidEye and Worldview-2 sensors which provide multispectral imagery with pixel sizes 76 

between 2 and 5 meters and more spectral bands, satellite remote sensing of estuarine and 77 

coastal regions has become more feasible. In addition, topographic information derived from 78 

airborne LiDAR (Light Detection and Ranging) technology has proven to improve coastal 79 

vegetation mapping significantly, in particular when used in combination with multispectral 80 

imagery (Prisloe et al., 2006; Kempeneers et al., 2009). 81 

The aim of this paper was therefore to test and compare the use of VHR SPOT-6, RapidEye 82 

and WorldView-2 (WV2) satellite imagery with and without combination of LiDAR data for 83 

mapping relevant vegetation types in the St Lucia Estuary. 84 

The classes that were mapped were aligned with existing habitat keys from the National 85 

Biodiversity Assessment (Van Niekerk and Turpie, 2012; Turpie et al., 2012). The intention 86 

was to provide guidance on which sensor or sensor combination provides the most accurate 87 

spatial information for informing estuarine management. Furthermore, the influence of 88 

environmental factors such as wind speed and water levels on the accuracy of the results was 89 

examined. 90 

 91 

2. Study area 92 

With an area of about 30 520 ha, St Lucia is the largest estuary in South Africa (Moll et al. 93 

1971; Turpie et al. 2012). The climate is subtropical with an average annual rainfall of 94 

approximately 1100 mm with most rainfall occurring in winter and spring i.e. June to October 95 

(Taylor et al., 2006). The average temperatures range between 25-28ºC throughout the year. 96 
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In the south the estuary mouth is connected to the Indian Ocean by the 21 km long Narrows 97 

channel. The lake system is separated from the sea by high coastal dunes that flank its eastern 98 

bank (Taylor, 2006). 99 

 100 

Figure 1: The St Lucia system including its lakes and feeder rivers (Source: Whitfield 101 

1992). 102 

 103 

St Lucia has an inlet/mouth that is periodically closed to the sea for months to years at a time 104 

depending on the river inflow regime and management interventions. This means that water 105 
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levels and salinity can change drastically within short periods, e.g. after floods and mouth 106 

breaks. In response, the distribution of estuarine vegetation communities is highly dynamic. 107 

The predominant natural estuarine vegetation in the region can be divided into 8 habitat units, 108 

namely permanently flooded macroalgae and submerged macrophytes, partly flooded reeds 109 

and sedges and salt marshes, mangroves and swamp forests, and grass and shrub vegetation, 110 

and lastly floating macrophytes (Rautenbach, 2015). Table 1 below summarises the dominant 111 

species and gives a brief description of these habitat types. 112 

Table 1: Habitat units and their dominant species (Rautenbach, 2015). 113 

Habitat Unit Dominant Species Description 

Macroalgae Ulva intestinalis, 

Chaetomorpha sp., 

Cladophora sp., Bostrychia sp. 

and Polysiphonia sp. 

Found at estuary margins, as 

epiphytes and associated with 

mangrove pneumatophores. 

Submerged 

macrophytes 

Ruppia cirrhosa, Zostera 

capensis and Stuckenia 

pectinata 

Plants rooted in substrata whose 

leaves and stems are completely 

submersed. 

Reeds and sedges Phragmites australis, Juncus 

kraussii and Schoenoplectus 

scirpoides 

Observed at sites with freshwater 

input at the margins, rooted in 

submerged substrata. Juncus 

kraussii is observed at the vicinity 

of the Forks and the Narrows. 

Mangroves Avicennia marina and 

Bruguiera gymnorrhiza 

Observed in the brackish to saline 

intertidal areas at the Narrows and 

mouth area. 

Grass and shrubs Sporobolus virginicus, 

Paspalum vaginatum and 

Stenotaphrum secundatum 

Sedge grass and shore slope lawn, 

observed in areas where there is no 

freshwater input, freshwater is 

provided by rainfall. 

Salt marsh Sarcocornia sp., Salicornia 

meyeriana and Atriplex patula 

Succulent species colonize 

exposed saline soils in False Bay 

and in the mudflats of North Lake 

and are not tolerant to long periods 

of inundation. 

Swamp forest Ficus trichopoda, Barringtonia 

racemosa and Voacanga sp. 

Observed on the banks of Mfolozi 

Estuary, in the vicinity of the back 

channel and Narrows and along 

the Eastern Shores under 

freshwater conditions. 

Floating macrophytes Nymphaea nouchal, Azolla 

filiculoides 

Floating leaved species are 

commonly associated with 

submerged and deepwater aquatics 

and occur at water depths from 0.5 

to 2 m.  
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 114 

Land use in the vicinity of the estuarine system is diverse. It includes commercial (sugarcane) 115 

crop production, subsistence agriculture, mining, tourism, commercial and subsistence 116 

forestry, conservation as well as residential areas (GTI, 2010).  117 

The land use in the immediate iSimangaliso Wetland Park (former Greater St Lucia Wetland 118 

Park) area changed dramatically during the last two decades. Before the declaration of the 119 

Wetland Park as UNESCO World Heritage Site in 1999 (UNESCO, 1999), large areas were 120 

used for commercial forestry, introducing alien Eucalypt and Pine species. Since the 121 

foundation of the Wetland Park, forestry has been actively removed, and international eco-122 

tourism is becoming more important. In the abandoned forestry areas, a quick succession of 123 

natural vegetation can be observed. However, an expansion of rural settlements into the area 124 

due to an increase in population (e.g. immigration from Mozambique and other areas), puts a 125 

new pressure on natural environments.  126 

 127 

3. Material and methods 128 

3.1. Input data 129 

3.1.1. Reference habitat map 130 

As reference map for this study an existing GIS map based on aerial imagery from 2008 was 131 

used. The map only delineates habitats below the 5m contour. This map was originally 132 

generated by Nondoda (2012). A modified version of this map as presented by Rautenbach 133 

(2015) which aggregates some of Nondoda’s original classes was used for this study. 134 

Accuracy and spatial detail was considered suitable for our purpose. The habitat units derived 135 

from this data set are Submerged macrophytes, Salt marsh, Swamp forest, Grass and shrubs, 136 

mangroves, and Reeds & Sedges (see Table 1 above). 137 

 138 
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3.1.2. LiDAR data 139 

A LiDAR data set acquired in April-May 2013 covering the iSimangaliso Wetland Park area 140 

was made available for this project by the iSimangaliso Wetland Park authority. The Digital 141 

Terrain Model (DTM) data consisted of high accuracy (1 Sigma) point data of LiDAR 142 

derived surface information, which has been provided in xyz ASCII format as well as in 143 

0.25m contours in SHP file format. The ASCII format contains very detailed surface 144 

information. However, files tend to be huge and require special software to access. In 145 

contrast, the SHP format is a format that most GIS practitioners can readily use and it is 146 

therefore a common LiDAR output product format. However, the generalisation of the 147 

information to derive 25cm contours means a loss of detail. In order to assess the impact of 148 

this loss of detail on the habitat classification accuracy, in this project both the SHP file 149 

contour product and the raw, unthinned xyz point cloud data binned to 1 meter were used as 150 

separate inputs for the habitat classification. 151 

 152 

3.1.3. Satellite imagery 153 

For this project, a series of high resolution satellite images from the RapidEye, SPOT-6 and 154 

WorldView-2 sensors was acquired. All imagery was provided in full band mode, 155 

geometrically but not radiometrically corrected (level 2B). Table 2 below gives an overview 156 

of the respective sensors, the spatial resolution and the respective acquisition dates. The 157 

respective spectral bands are given in Table 3 below.  158 

 159 

Table 2: Satellite data used and their specifications 160 

Sensor Resolution (m) Acquisition Dates 

WorldView-2 2.0 9 April 2010 

RapidEye 5.0 18/20 July 2011  
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13 January 2012 

SPOT6 5.0 8 February 2014 

LiDAR 
Rasterised to 

match above 
April-May 2013 

 161 

3.2. Areas used for application of approach  162 

For the supervised classification approach only subsets of the total satellite coverage were 163 

used which corresponded largely with the extent of the Wetland Park and the extent of the 164 

reference habitat map. In this way, land cover and habitat classes for which no reference data 165 

were available and whose accuracy could not have been assessed (e.g. any agriculture and 166 

other transformed areas) were largely excluded. The available RapidEye and SPOT-6 data 167 

covered almost the full extent of that area, while for WorldView-2 only for the southern part 168 

imagery was available. 169 

 170 

3.3. Methods 171 

The final goal of comparing habitat classifications derived from different combinations of 172 

input data has been achieved following several pre-processing, data conversion and data 173 

generation steps. Figure 2 gives an overview of the work conducted for the Maximum 174 

Likelihood classification. The individual pre-processing, classification and post-processing 175 

steps are unpacked in the following sections. 176 
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Figure 2: Flow diagram of technical steps conducted.  

 177 

 178 

3.3.1. Preprocessing of remote sensing data 179 

All satellite image files were corrected for radiometric and atmospheric effects to derive top 180 

of canopy reflectance values. This correction allowed for better analysis of the spectral 181 

signatures in the actual classification approach as described in Section 3.3.4 below.  182 
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The RapidEye image for July 2011 was provided as seven individual tiles from two separate 183 

acquisition dates (18 and 20 July 2011), the RapidEye image for 13 January 2012 as six 184 

individual tiles. Following the atmospheric correction of the individual tiles, all the tiles for 185 

July 2011 and all tiles for January 2012 were mosaicked to allow for an easier handling of the 186 

data in the subsequent work steps. 187 

Some of the satellite images originally came in UTM projection with WGS84 Datum, while 188 

others were provided in Transverse Mercator projection. It was decided to reproject all 189 

images to the projection of the 2008 reference data: Transverse Mercator, Central Meridian 190 

33ºE, Hartebeesthoek 1994 Datum. In this way, the best possible geographical match of the 191 

data sets was achieved. It is important that the images to be classified overlay with high 192 

geographic accuracy to the reference data, as spatial misalignments can lead to 193 

misclassifications and reduced accuracies (Townshend et al. 1992).   194 

Given the humid, subtropical climate of the area, it was very difficult to get 100% cloud free 195 

satellite images; three out of the four images used had some cloud occurrences. A masking of 196 

cloud areas was not conducted as a result of time constraints. However, in order to avoid 197 

biases in the classification and accuracy results, care was taken in the selection of cloud-free 198 

training and validation points instead (Section 3.3.2 and 3.3.3). 199 

The LiDAR data for that area were provided in individual small tiles as well. Therefore, in a 200 

first step, those tiles covering the SPOT-6, RapidEye and WV-2 mosaics were identified. 201 

For those, both, the 25cm contour SHP files as well as the unthinned xyz ASCII files binned 202 

to 1m resolution were converted into an ERDAS IMG raster format matching the spatial 203 

resolution of the respective multispectral images (2m and 5m respectively). The raster tiles 204 

were then mosaicked and reprojected to match the projection of the multispectral mosaics. 205 

The elevation data ranges were then stretched and the layers were stacked (i.e. attached) to 206 

the respective multispectral images (see respective last layers “contour DEM” and “xyz 207 
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DEM” in Table 3 below). The elevation range of the original Terrain model for that area was 208 

between -2.5 m to + 180 m. This data range is very small when compared to the re-scaled 209 

reflectance values of the multispectral images, ranging typically between 500 and 6000. The 210 

original small data range of the elevation data would be almost un-noticeable when attached 211 

as extra layer to the multispectral image, thus not adding much information for the Maximum 212 

Likelihood classification. Therefore the DEM data were re-scaled using the function [(Image 213 

+2.5)*100], leading to a “stretched” data range between 0 and 18250 which emphasises small 214 

variations in relief. Altogether 8 data stacks were produced as input for the classification 215 

process (Table 3). 216 

Table 3: Bands of the respective layer stacks used for the supervised classification 

process. 
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3.3.2. Extraction of ground truthing points from GIS reference data 219 

Basis for the training and validation data for the classification of the satellite images was the 220 

2008 reference map (Section 3.1.1). For the classes Submerged macrophytes, Salt marsh, 221 

Swamp forest, Grass and shrubs, Mangroves and Reeds & sedges (Table 1) stratified random 222 

points were extracted from that map (Duro et al., 2012; Lowry et al., 2007). Between 20 and 223 

30 points per class per satellite image extent were created. For all resulting points it was 224 

checked visually if any of them was lying in an area impacted by clouds or cloud shadows. 225 

Impacted points were omitted to avoid biases in the classification and validation approach. 226 

 227 

3.3.3. Extraction of ground truthing points for bare soil and open water 228 

Additional random points for the land cover classes Open water and Bare soil were created, 229 

as these classes are highly important in an estuarine and coastal context and it was anticipated 230 

that the inclusion of training points for these classes would improve the overall accuracy of 231 

the supervised maximum likelihood classification in narrowing the actual feature space for all 232 

classes.  233 

For the identification of open water and bare soil area, the normalised Difference Vegetation 234 

Index (NDVI) was calculated for all four images, following the formula NDVI = (NIR- Red) 235 

/ (NIR + Red). The value range for NDVI data is from -1 to +1. It is generally accepted that 236 

NDVI values for open water are lower than 0, and values for bare soil are in the positive 237 

range just above 0 if images are derived from radiometrically corrected images, as in our case 238 

(Loveland et al., 1991; Lunetta et al., 2006). Visual inspection of the actual NDVI data 239 

confirmed this rule, only for the RapidEye-derived NDVI data the threshold between water 240 

and bare soil had to be adjusted to 0.1 for a visually satisfactory distinction between the two 241 

classes. 242 

For Bare soil, an NDVI value range between 0.0 (0.1 for RapidEye) and 0.4 was set. The 243 

threshold of 0.4 for delineating bare soil from vegetation appears to be quite high. However, 244 
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impervious surfaces (i.e. anthropogenic bare surfaces) were characterised by Loveland et al. 245 

(1991) by values between 0.3 and 0.4, too. However, for this paper, the threshold has been 246 

defined visually from the image, using fallow fields, roads and the beach as reference. It 247 

cannot be excluded though that our class “Bare Soil” would include some sparse vegetation, 248 

too. 249 

From the derived Water and Bare Soil masks about 25 random points were extracted for both, 250 

training and validation and added to the respective point sets created from the 2008 habitat 251 

reference map. Points impacted by clouds and cloud shadows were removed from these 252 

classes as well. For the resulting eight habitat classes, between 154 (WV-2) and 251 253 

(RapidEye) training and validation points respectively were used. The variation in point 254 

numbers is related to the amount of points which had to be deleted due to cloud and cloud 255 

shadow impact. Further, in the 2008 reference map Salt marsh and Submerged macrophytes 256 

did not occur in the southern area covered by the WV-2 image, thus these classes are not 257 

represented in the WV-2 classification. 258 

 259 

3.3.4. Maximum Likelihood classification 260 

For all four images spectral training signatures were created for the respective training points 261 

for all eight respective layer stacks (Table 3). The resulting spectral signatures were cleaned 262 

from obvious outliers that would have contributed to biased spectral statistics in the following 263 

classification process. Outliers were caused mainly by changes in land cover in the time 264 

between the 2008 reference data and the actual image acquisition date, such as forest 265 

plantation to grass and shrubs, or grass and shrubs to swamp forest. Where the analysis of the 266 

spectral signatures revealed that there are spectral subgroupings within one of the reference 267 

classes, these subclasses were treated as individual classes during the classification process. 268 

As an example, the class “Grasses and Shrubs” consisted of areas which were clearly 269 
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dominated by shrubs, while other areas were dominated by grasses, resulting in either more 270 

shrub or grass dominated spectral signatures. Here subclasses “Grass and shrubs_woody” and 271 

Grass and shrubs_grassy” were created. Furthermore some of the reeds were flooded during 272 

the time of image acquisition and looked spectrally different from non-flooded reeds. 273 

Keeping these spectrally different subgroups of a class separate in the actual classification 274 

process has shown to produce higher classification accuracies. The classification process was 275 

then run on all 8 layer stacks (as per Table 3) twice, first excluding, then including the 276 

contour and xyz DEM respectively, resulting in a total of 16 classifications.  277 

 278 

It was decided to include all multispectral bands of the respective sensors in the classification 279 

process to assess the value of the high spectral resolution (i.e. increased number of bands) on 280 

the accuracy of the classification results. Schuster et al. (2012) and Adam et al. (2014) 281 

emphasise the improvement of land cover classifications by using RapidEye’s RedEdge band. 282 

For all classifications, Feature Space was selected as the non-parametric rule and Maximum 283 

Likelihood as the parametric rule in ERDAS’ Supervised classification tool.  284 

 285 

3.3.5. Post-Processing 286 

Given the high spatial resolution of the satellite images, the 16 classification results looked 287 

very “noisy”. This means that the vegetation types were disrupted by single classes or groups 288 

of pixels of another class, mainly as a result of shadow effects in the vegetation canopy. It 289 

was therefore decided to filter the classification outputs to eliminate those miss-classified 290 

single pixels or small pixel groups consisting of <8 pixels (Figure 3). According to Duro et 291 

al. (2012) this smoothing of classification results can improve the overall classification 292 

accuracy.  293 
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Further, where existing, the interim subclasses (e.g. Sedges and Reeds-flooded and Sedges 294 

and Reeds-non-flooded) were merged again to the original class types. This had to be done to 295 

have the same level of class detail as the reference habitat map for accuracy assessment 296 

purposes. 297 
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Figure 3: Example of classification results. Top: Multispectral WV-2 image of the 298 

estuary mouth; Bottom: final classification results for same area after filtering (areas 299 

higher than 10m above sea level are masked out).  300 

 301 

3.3.6. Accuracy Assessment 302 

For all resulting 16 classifications, error matrices including the Overall Accuracy, the User’s 303 

and Producer’s Accuracy for each class as well as the Kappa coefficient were produced and 304 

analysed. The Overall Accuracy gives the percentage of reference points that have been 305 

classified correctly. The User’s Accuracy indicates the probability that a pixel classified in 306 

this class actually represents this class on the ground, and the Producer’s Accuracy indicates 307 

how accurately the training points have been classified. The Kappa statistic indicates to 308 

which extent the classification result is better than pure chance (Lillesand et al. 2004), i.e. the 309 

higher the Kappa value, the greater the classification accuracy. The difference between 310 

Kappa and Overall Accuracy (OAA) is that the OAA can be biased by differences in the 311 
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number of reference points per class, i.e. classes with more reference points weigh more in 312 

the OAA, while the Kappa is not affect by unequal reference point numbers. 313 

 314 

4. Results and Discussion 315 

Table 4 below gives an overview of the Overall Accuracies and Kappa values for all 16 (4 x 316 

4) classification runs.  317 

 318 

Table 4: Overview of overall accuracies (OAA) and Kappa values for all classifications. 319 

 320 

  2010 WV-2 2011 RapidEye 2012 RapidEye 2014 SPOT-6 

Run no. DEM type OAA Kappa OAA Kappa OAA Kappa OAA Kappa 

1 no contours 72.7% 0.66 57.8% 0.52 55.0% 0.48 69.6% 0.64 

2 contours 76.6% 0.70 62.5% 0.57 60.2% 0.54 64.3% 0.59 

          

3 no xyz 75.3% 0.69 57.4% 0.51 56.8% 0.50 71.4% 0.67 

4 with xyz 77.9% 0.72 66.8% 0.62 57.8% 0.51 75.7% 0.72 

 321 

 322 

4.1. Impact of LiDAR DEMs on classification accuracies 323 

Comparing runs 1 and 2, and runs 3 and 4 in Table 4 respectively shows that in 7 out of the 8 324 

classifications the additional use of the LiDAR derived DEM information improved the 325 

overall classification accuracies (OAA). This result is in accordance to other publications, 326 

confirming that the combined use of LiDAR and multispectral data improves classification 327 

accuracies (e.g. Kempeneers et al. 2009). The LiDAR decreased the accuracy of the 328 

classification results in the second run of the SPOT-6 image.  329 

The overall accuracies and Kappas for the purely multispectral based classifications of the 330 

first and third run are about the same for the RapidEye and SPOT-6 images, which was to be 331 

expected because in both cases the input is only the multispectral image. However, there is a 332 
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slight improvement in the third run of the WorldView-2 image, probably caused by slight 333 

differences in the respective training areas.  334 

Accuracies for three of the four classifications including the detailed LiDAR information in 335 

the fourth run are higher than the respective accuracies for the contour-derived LiDAR stacks 336 

in run 2. This indicates that the use of more detailed surface data improves vegetation 337 

classification accuracies. 338 

 339 

4.2. Confusion between Sedges & Reeds and Grass & Shrubs 340 

Table 5 shows the error matrix for the fourth run of the WorldView-2 classification that 341 

included the detailed xyz-derived LiDAR data. This matrix shows how many of the reference 342 

data have been classified correctly. For example, of the 19 validation points for Grass and 343 

Shrubs (row Ref. Total), 13 have been correctly classified as Grass and Shrubs, but 2 points 344 

were classified as Swamp forest and Sedges and Reeds and one as Mangroves and one as 345 

Bare soil. Altogether, 33 points have been classified as Grass and Shrubs (Class. Total), 13 of 346 

which are in fact Grass and Shrubs, but 9 of the 33 should have been classified as Swamp 347 

forest, 1 as Mangroves and 10 as Sedges and Reeds instead. The last columns give the 348 

respective Producer’s and User’s Accuracy and Kappa value per class. 349 

Table 5: Error matrix for the 4th run of the WorldView-2 classification of the stack 350 

including the xyz-derived LiDAR information.  351 

Classified 
Data 

Sw. 
forest G & S Mangr. 

Open 
water 

Bare 
soil S & R 

Class.  
Total 

 Prod. 
Acc. 

Users 
Acc. Kappa 

Sw. forest 45 2 1 0 0 0 48 81.8% 93.8% 0.90 

Gr. & Shrub 9 13 1 0 0 10 33 68.4% 39.4% 0.31 

Mangroves 1 1 7 0 0 0 9 70.0% 77.8% 0.76 

Open water 0 0 0 22 0 0 22 81.5% 100% 1.00 

Bare soil 0 1 1 3 14 0 19 100% 73.7% 0.71 

S. & Reeds 0 2 0 0 0 19 21 65.5% 90.5% 0.88 

Ref. Total 55 19 10 25 14 29 152 
   

Overall Classification Accuracy = 77.92% 

      Overall Kappa Statistics = 0.723 

        352 
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Table 5 shows that the accuracies for 5 of the 6 classes with Kappas >0.7 are quite high, 353 

including the classes Bare soil and Water, which, because of their spectral distinctness from 354 

any vegetation classes, in most land cover classifications yield very high accuracies. 355 

However, the sensors often confused the classes Grass & Shrubs and Sedges & Reeds, 356 

leading to Kappas as low as 0.31 and Accuracies as low as 39.4%. The analysis of the other 357 

classifications shows that the same confusion occurred frequently between these two classes.  358 

However, we expect that the high dynamic of the estuarine vegetation, in particular the non-359 

woody classes even over a relatively short observation period of two years would be the main 360 

reason for the low accuracy results when measured against the 2008 reference data. High 361 

dynamics in the estuarine vegetation have also been reported by Rautenbach (2015) for the 362 

period 2008-2013. In other words, our classifications correctly picked up real vegetation 363 

changes on the ground.  364 

Further sources for low classification accuracies are:  365 

- Spectral similarity between the classes: The more grassy areas of the class Grass and 366 

Shrubs might have gotten confused with the also grass-like Sedges & Reeds. 367 

- Small scale vegetation mosaic: In case that the vegetation on the ground appears in 368 

form of a mosaic of small patches of different vegetation types and that this patchiness 369 

had been “generalised” in the 2008 reference map, this might confuse the classification 370 

in that either the classifier picked variations up correctly but the generalised reference 371 

data did not have the correct resolution, or in the form of spectral mixed pixels, which 372 

are “blurry” and do not pick up boundaries between patches correctly. 373 

- Different water levels: both vegetation types are bound to sites which are low lying and 374 

prone to (and dependent on) various levels of flooding. So even if the vegetation itself 375 

did not change between the image date and the reference date, various levels of flooding, 376 

spatially and temporally, might have biased the spectral signatures and lead to confusion 377 
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between these classes. This observation is confirmed by the findings of Fyfe (2003) and 378 

Silva et al. (2008) whose wetland classifications were affected by similar effects. Figure 379 

5 and Figure 6 also illustrate the varying water levels in the area at the time of the 380 

satellite observations. 381 

- Accuracy of the reference data: The St Lucia wetlands cover a large area and under 382 

various water levels all sections are not equally accessible (e.g. swampy area with large 383 

populations of hippopotami and crocodiles). It stands to reason that in the 2008 reference 384 

map some areas were therefore mapped at a coarser resolution than others. It can 385 

therefore not be excluded that those two classes have been confused in that data already. 386 

 387 

4.3. Analysis of accuracies of other classes 388 

Figure 4 below shows the Kappa values for all 8 classes in all 16 classifications. The figure 389 

shows that the accuracy for class Submerged macrophytes is consistently high for all three 390 

images (class not present in smaller WorldView-2 image extent). This result is in contrast to 391 

other findings, e.g. by Adam et al. (2009) who found that submerged vegetation is difficult to 392 

distinguish due to the high water fraction in the spectral signal. Reflectance of water in the 393 

Infrared band is close to zero, while vegetation has high reflectance in Infrared and 394 

distinction between species frequently relies on these bands. However, Dogan et al. (2009) 395 

used Quickbird data for successful mapping of submerged vegetation as well which provides 396 

4 spectral bands (visible plus near infrared) in 0.65 m resolution. 397 

Similarly, Swamp forest was consistently mapped with very high accuracies, apart from the 398 

DEM-including runs 2 and 4 of the RapidEye images. In contrast, the class Grass and Shrubs 399 

frequently was amongst the lowest accuracies. Mangroves have been classified satisfactory in 400 

most of the classifications, too; only in run 1 and run 2 of the 2011 RapidEye image they got 401 
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confused with Swamp Forest, which means, here the additional use of the DEM increased the 402 

separability between the two forest types. 403 

The class Open Water was amongst the best classes in most of the images, which was 404 

expected. Water and Bare soil were classified with very low accuracies however in the 405 

RapidEye images, and the reasons for this are discussed in section 4.5 below. 406 

The implication of these results for the user is that Submerged macrophytes, Swamp forest, 407 

Mangroves, Open water and Bare soil are those classes which – according to our results – can 408 

be extracted most reliably from the compared WorldView-2, RapidEye and SPOT-6 images, 409 

while the other classes, in particular those with continuously low accuracies are not so easily 410 

distinguishable in an approach as the presented one. 411 

 412 

 413 

Figure 4: Kappa values for all classes in all 16 classification runs. R1 and R3: runs 414 

without LiDAR DEM, run R2: with contour DEM, run R4: with xyz DEM. 415 

 416 

4.4. Comparison of accuracies between sensors 417 

Generally, WorldView-2 produced the best accuracies and SPOT-6 the second best results, 418 

while all the RapidEye classifications have strikingly low accuracies (Table 4) with overall 419 
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accuracies between 55.0 and 66.8% and Kappas as low as 0.48 to 0.62. The good WV-2 420 

result is expected, given the closest temporal “proximity” to the 2008 reference data. It might 421 

be premature though to conclude that WorldView-2 also having the highest spectral and 422 

spatial resolution (8 bands, 2m pixel size) of the compared data sets is the most appropriate 423 

for estuarine habitat classification, as, given to the smaller extent of the available image, the 424 

total number of classes was lower than in the other images as Submerged macrophytes and 425 

Salt marsh did not occur in that area. A lower number of classes usually increases 426 

classification accuracies.  427 

SPOT-6 has only 4 spectral bands and a pixel size of 5 meters, and with its 10 vegetation 428 

classes it still produced the second best results, which is even more striking, given its largest 429 

temporal “distance” from the 2008 reference data. In contrast, both RapidEye images with 5 430 

spectral bands and also 5 meter pixel size produced unsatisfactory accuracies for many 431 

classes. In comparison, Adam et al. (2014) achieved accuracies above 90% for their 432 

RapidEye based land cover classification in the same region. However, their classes were 433 

much broader (bare land, coastal sand, grassland, degraded grassland, indigenous forest, 434 

mature sugarcane, young sugarcane, plantation forest, settlements, water body and wetland) 435 

and spectrally more distinct and thus less prone to misclassification than the classes used in 436 

this study, where Adam’s class “Wetland” actually is divided into six subclasses. 437 

 438 

Given the inconsistency of accuracies for individual classes between the compared sensors, in 439 

this study the results are not used for a change analysis of over time, as the results are likely 440 

biases by the respective class-related errors. 441 

 442 
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4.5. Analysis of 2011 and 2012 RapidEye results using environmental condition data 443 

Table 6 shows the error matrix for the 2011 RapidEye classification of the stack including the 444 

xyz-derived LiDAR information (run 4) as a typical example for the RapidEye results. Table 445 

7 shows the accuracy matrix for the fourth run of the 2012 RapidEye classification. 446 

Table 6: Error matrix for the 2011 RapidEye classification of the stack including the 447 

xyz-derived LiDAR information.  448 

 449 

Classified 
Data Subm.  

Salt 
marsh 

Swamp 
forest G & S Mangr. 

Open 
water 

Bare 
soil S & R 

Ref.  
Totals 

 Prod. 
Acc. 

Users 
Acc. Kappa 

Submerged  20 0 0 0 0 0 0 0 23 87.0% 100.0% 1.00 

Salt marsh 0 20 0 4 0 1 0 2 24 83.3% 74.1% 0.71 

Sw. forest 0 0 22 5 1 0 0 3 29 75.9% 71.0% 0.66 

Gr.& Shrub 0 2 0 7 3 0 7 6 20 35.0% 28.0% 0.20 

Mangroves 0 0 3 0 17 0 0 1 23 73.9% 81.0% 0.79 

Open water 0 0 0 0 0 9 0 0 23 39.1% 100.0% 1.00 

Bare soil 3 1 0 0 0 13 11 1 18 61.1% 37.9% 0.32 

S. & Reeds 0 1 4 4 2 0 0 29 42 69.1% 72.5% 0.65 

Col.Total 23 24 29 20 23 23 18 42 202 
   

Overall Classification Accuracy =  66.83% 
         

Overall Kappa Statistics = 0.62 
           450 

In the 2011 result, the class Sedges and Reeds for the reasons described above is confused 451 

with Grass and Shrubs. However, in this image, Grass and Shrubs also was confused with 452 

Bare soil. It has to be remembered though, that the Bare Soil mask was produced using an 453 

NDVI threshold of 0.4, which is likely to include sparsely vegetated areas as well (compare 454 

section 3.3.3). It is therefore possible that some open Grass and Shrub areas, maybe areas 455 

recovering after vegetation removal, wrongly fell into the Bare soil class. Further, probably 456 

the more woody fraction of the Grass and Shrubs class got confused to a greater extent with 457 

the other woody class Swamp forest. Apparently RapidEye’s spectral resolution was not good 458 

enough to distinguish between these spectrally similar classes. 459 

 460 



25 
 

Table 7: Error matrix for the 2012 RapidEye classification of the stack including the 461 

xyz-derived DEM information.  462 

Classified 
Data Subm. 

Salt 
marsh 

Swamp 
forest G & S Mangr. 

Open 
water 

Bare 
soil S & R 

Ref.  
Totals 

Prod. 
Acc. 

Users 
Acc. Kappa 

Submerged  13 0 0 0 0 0 0 0 18 72.2% 100.0% 1.00 

Salt marsh 0 8 0 3 2 0 0 1 26 30.8% 57.1% 0.52 

Sw.forest 0 0 26 3 4 0 0 2 29 89.7% 74.3% 0.71 

Gr. & Shrub 0 5 1 24 3 0 3 3 40 60.0% 61.5% 0.53 

Mangroves 0 0 0 0 12 0 0 4 23 52.2% 75.0% 0.72 

Open water 0 0 0 0 0 0 0 0 25 --- --- 0.00 

Bare soil 5 8 0 2 0 25 16 1 24 66.7% 28.1% 0.20 

S. & Reeds 0 5 2 8 2 0 5 34 45 75.6% 60.7% 0.51 

Col.  Total 18 26 29 40 23 25 24 45 230 
   

Overall Classification Accuracy = 57.83% 
         

Overall Kappa Statistics = 0.51 
           463 

Striking however is the high degree of confusion and misclassification of the Bare Soil and 464 

Water classes in both, the 2011 and the 2012 RapidEye images. In most land cover or 465 

vegetation classifications these classes usually produce accuracies of 75%, 80% or better.  466 

Figure 5 and Figure 6 might explain the results. At the bottom of Figure 5 subsets of the 467 

Lakes area of the RapidEye and SPOT-6 images are displayed in natural (true) colour. The 468 

WorldView-2 image unfortunately did not cover this area. The estuary’s water body looks 469 

very different in all three images. In the July 2011 image, the water level appears to be 470 

moderately high, in the January 2012 image the water level is very low, and in the 2014 471 

SPOT-6 image the water level appears to be very high. These observations are supported by 472 

the measured water levels at the St Lucia Bridge (Figure 6). The water level at the time of 473 

acquisition of the 2010 WV-2 image is about the same at the reference time in 2008. The 474 

comparable hydrologic conditions with no major water level changes between the two dates 475 

resulted in vegetation similarity and contributed to the high accuracies of the WV-2 476 

classification.  477 

 478 

 479 
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Figure 5: Top: Hourly wind speed, measured at Richardsbay for 2011-2014 and Durban 480 

for 2010 (no Richardsbay data available for 2010), for three days prior to respective 481 

satellite image acquisition dates. Bottom: Subset of respective RapidEye and SPOT-6 482 

images for the North Lake and False Bay area of the estuary. Wind data source: 483 

SADCO (http://sadco.csir.co.za/). 484 

 485 



27 
 

 486 

Figure 6: Water level at the St Lucia Estuary, measured at the St Lucia Bridge (source: 487 

Ezemvelo KZN Wildlife). Grey bars: 4x image acquisition dates and 2008 date of 488 

reference data collection. 489 

 490 

The difference in the 2011 and 2012 water levels and the peak water levels in between the 491 

reference and image acquisition dates might explain the confusion of the classes which are to 492 

be found close to the water edge, as their position will probably have been different from the 493 

reference GIS map or vegetation mapped in 2008 might have been washed away during the 494 

floods. This result is supported by Rautenbach (2015) who noted: “The biggest change in 495 

vegetation composition [between 2008 and 2013] was the overall decrease in salt marsh (by 496 

57%) and increase in submerged macrophytes (by 96%). After the drought [in 2010], water 497 

level rose rapidly as rainfall returned to normal and the Mfolozi River connected to the sea 498 

and St Lucia Estuary. This caused an increase in surface area of the water column (which 499 

includes the Lakes, Narrows, Back Channel, Link Canal and Mfolozi River) from 30 498 ha 500 

in 2008 to 32 624 ha in 2013. The increase in water level and the reduction in salinity in 501 

False Bay and the lakes (North and South) caused flooding and inundation of the salt marsh 502 

habitat, reducing the area covered.” 503 
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The colour of the water at the image acquisition dates is another potential source for 504 

misclassification. In the SPOT-6 image the water looks relatively clear with only a slight 505 

brown discolouration indicating some small degree of turbidity. This maybe a result of the 506 

mixing of the strong winds two days before the image was taken (Figure 5, top). Given the 507 

high water levels at that time, the mixing of the water column would only have been 508 

moderate.  Flow from the Mfolozi River and entry of water via the back channel and link 509 

canal would also result in increased turbidity particularly in the Narrows. 510 

In the 2011 image however, the water looks greenish, indicating some degree of chlorophyll, 511 

either from some microalgae bloom or by submerged macrophyte development. This 512 

observation was confirmed by Taylor et al. (2013) who reported high coverages of 513 

macrophyte beds in that area which vanished after May 2013. The misclassification of Water 514 

as Bare soil (Table 6) supports this observation when considering that our Bare soil based on 515 

an NDVI <0.4 likely included some vegetation signal. 516 

In the 2012 RapidEye image, the water looks very turbid and turbulent. Figure 5 and Figure 6 517 

show that the water level at that time was very low and that during the three days preceding 518 

the image capture a strong (south-easterly) wind was blowing. Under these conditions the 519 

water column would have been mixed up and very turbid and the water surface very rough 520 

with wind generated waves. (The waves are actually visible when zooming into the image.) 521 

This explains the high degree of misclassification between bare soil and water in this image. 522 

 523 

5. Conclusions 524 

This paper examined the value of very high resolution multispectral satellite imagery from 525 

the WorldView-2 (2 m pixel size), RapidEye (5m pixel size) and SPOT-6 (5m pixel size) 526 

sensors acquired between 2010 and 2014 and LiDAR derived digital surface information for 527 

classifying estuarine vegetation types. Ground truthing reference was a GIS-based vegetation 528 
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map from 2008. Supervised maximum likelihood classification produced satisfactory overall 529 

accuracies for the WorldView-2 and the SPOT-6 image, while the RapidEye-based 530 

classifications produced slightly lower overall accuracies.  531 

However, the analysis of classification errors in relation to environmental factors showed that 532 

mainly high vegetation dynamics, adverse wind conditions, different water levels and 533 

resulting water turbidity seem to be the reason for the observed misclassifications rather than 534 

weaknesses of the imagery itself. 535 

It is the inherent dynamic nature of the estuarine environment with large fluctuations in water 536 

levels and salinity, which causes swift turn-over of vegetation types, temporally and spatially. 537 

Examples include Salt marsh to Sedges and Reeds, or Grass and Shrubs to Swamp forest on 538 

abandoned Forest plantations. This leads to inaccurate vegetation classifications if the 539 

acquisition date of satellite imagery and the validation data are too far apart. In the St Lucia 540 

Estuary, even 6-12 months difference turned out to lead to major vegetation change and 541 

hence misclassification, if a major flood eradicated entire vegetation patches or even a recent 542 

wind event occurred. It is therefore recommended that ground truthing data are to be used 543 

that match the satellite image acquisition dates as closely as possible. 544 

Results were also influenced by physiognomic and spectral similarity of certain vegetation 545 

types, such as grass and reeds, and shrubs and forests. This confusion is technically expected. 546 

The additional use of LiDAR-derived Digital Surface Models improved the separability of 547 

those classes and improved 5 out of 8 classification runs. Further solutions could include 548 

either the use of a sensor with a better (hyperspectral) resolution of the satellite imagery or 549 

possibly by a more conscious choice of the image acquisition date, where spectral 550 

separability varies over the seasons.  551 

Apart from true vegetation change, recent weather impacts (high water levels inundating 552 

terrestrial vegetation and wind events mixing up the water column) also contribute to a bias 553 
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in the reflective properties of the satellite imagery and impair the accurate identification of 554 

surface and vegetation types. 555 

Our research showed the importance of ancillary environmental condition data such as water 556 

levels, mouth state, wind and weather data to interpret results appropriately. For dynamic 557 

environments, such as estuaries and the coast, these data should be sourced routinely as part 558 

of any remote sensing based vegetation assessment study. This is even more important under 559 

(so frequently experienced) project conditions where ground truthing data of the same period 560 

are not available. 561 

This research also shows that remote sensing may potentially be more successfully applied to 562 

the large permanently open estuaries (~ 30 of South Africa’s systems) as their habitats are 563 

more stable than the systems that close with large fluctuations in water levels. 564 

The results show that the spatial and spectral resolution of modern very high resolution 565 

imagery is sufficient to satisfactory map and monitor small scale estuarine vegetation. They 566 

emphasize however the importance of synchronisation of ground truthing data with actual 567 

image acquisition times in these highly dynamic environments. 568 

 569 
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