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Abstract—Building synthetic child voices is considered a dif-
ficult task due to the challenges associated with data collection.
As a result, speaker adaptation in conjunction with Hidden
Markov Model (HMM)-based synthesis has become prevalent
in this domain because the approach caters for limited amounts
of data. An initial average voice model is trained using data from
multiple speakers and adapted to resemble a specific target child
speaker. Due to the scarcity of child speech data, initial models
used in this approach are mostly trained with adult speech data.
However, selection of appropriate training speakers from large
corpora is not a trivial task because there is no means, other
than conducting exhaustive subjective listening tests, to determine
which training speakers will yield the best quality synthetic child
voice. Therefore, there is a need to find an objective measure that
can be used to easily identify a small set of training speakers that
will yield the best quality output. In this paper we investigate
whether a relationship exists between objective and subjective
voice evaluation measures with regard to the selection of training
speakers for an average voice model used in speaker-adaptive
HMM child speech synthesis. Results indicate that, if training
speakers that are closer to the target speaker are used to train
initial models, better quality child voices are generated.

I. INTRODUCTION

The main objective of research in the field of Text-to-Speech
(TTS) synthesis is to generate speech that is as natural and
intelligible as that of a human speaker. Concatenative-based
synthesis systems have been successful in generating high
quality synthetic speech [1]. However, a crucial limitation of
this technique is that each unique voice requires a unique set
of recordings to be made. Various attempts have been made to
generate high quality speech that contains a variety of speak-
ers, voice characteristics and speaking styles [2]. However,
to implement similar concatenative-based synthesis systems
requires large amounts of speech data from multiple speakers
and this data collection process has high costs associated with
it.

In contrast to concatenative-based speech synthesis, a sta-
tistical parametric speech synthesis system based on hidden
Markov models (HMMs) can generate synthetic speech with-
out requiring large scale speech corpora [3]. Such a system
has the advantage of easily transforming its models such
that a system can reproduce varying speakers, speaking styles
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and emotions [4]. This process is called speaker adaptation.
Speaker adaptation applies transformation techniques that only
require small amounts of adaptation data to adapt an already
trained system to a specific target speaker [5]. In this way,
thousands of voices can be generated, representing a diverse
set of speakers and voice characteristics [6].

In the domain of child speech synthesis speaker adaptive
synthesis is prevalent because data collection is a major
challenge. Speaker adaptation is used in conjunction with
HMM-based synthesis to develop child voices. The average-
voice based synthesis technique introduced in [7] and applied
in [8] uses an average voice model and model adaptation
to adapt an initial model, trained with multiple speakers, to
resemble a target child speaker. Due to the scarcity of child
speech data, sufficient data is usually not available to train an
initial average child model. As a result, the initial models used
in child speech synthesis are often trained with adult speech
data [8], [9].

A drawback of this approach is the method that is used to
select training speakers. Identifying the most suitable adult
training speakers from large corpora is a challenging task
because there is no means, other than conducting exhaustive
subjective listening tests, to determine which training speakers
would produce the best quality synthetic child voice. There-
fore, there is a need to find an objective measure that can be
used to easily identify a small set of training speakers that will
yield the best quality output.

The aim of this study was to determine whether a relation-
ship exists between objective and subjective voice evaluation
measures with regards to the selection of training speakers for
an average voice model used in child speaker-adaptive HMM-
based synthesis. The hypothesis is that, if training speakers
that are closer to the target speaker are used to train the initial
models, better quality child voices can be generated [10]. To
determine exactly what is meant by closeness it needs to be
defined in terms of objective measures that directly correlate
with yielding better quality voices.

This paper is organized as follows. Section II provides a
review of previous work and related research. Section III
describes the methods used in this study, followed by the



presentation of results. The results are discussed in Section IV
and conclusions are presented in Section V.

II. BACKGROUND
A. Overview of average-voice-based speech synthesis

HMM-based synthesis is a statistical parametric approach
that generates speech waveforms using hidden Markov models
[11]. HMMs were originally applied in automatic speech
recognition but are also being applied in speech synthesis
[12], [13]. HMM-based synthesis has grown in popularity over
the last few years, with success in synthesizing both natural
sounding and intelligible speech. In HMM-based synthesis
systems, human speech production is modeled in terms of
the frequency spectrum (vocal tract) and the fundamental
frequency (vocal source). In this way, models are trained
and not memorized as in the concatenative-based synthesis
approach.

Model adaptation is used in conjunction with HMM-based
synthesis to implement speaker adaptation [14]. Typically, an
initial model is trained with multiple speakers. The initial
model is also referred to as an average voice model. The
average voice model is adapted using speaker adaptation
techniques to transform the initial model in such a way that
its properties resemble those of a specific target speaker. This
approach is referred to as average-voice based synthesis [7].
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Fig. 1: Schematic representation of an average-voice based
synthesis system adapted from [5]

Figure 1 illustrates an average-voice based HMM synthesis
system. The architecture of the average-voice based HMM-
based speech synthesis system comprises of a training stage,
adaptation stage and synthesis stage.
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In the training stage, speech analysis is performed on the
raw training data. Two important parameters are extracted:
the spectral and excitation parameters. First, the static spectral
features, mel-cepstral coefficients, are obtained by mel-cepstral
analysis [15] and then the excitation parameters, which are
the F{, values, are estimated using an instantaneous frequency
amplitude spectrum (IFAS) based method [16]. In addition,
dynamic and acceleration features are also used. These are
calculated as the first and second order regression coefficients
of the static features. The features extracted from the speech
database are modeled using multi-stream HMMs. The spectral
features are modeled using continuous probability distributions
and the excitation features are modeled using multi-space
probability distributions (MSD). In order to model variations
of spectrum, pitch and duration, phonetic and linguistic con-
textual factors and stress related factors need to be taken into
account.

Using context-dependent HMMs, an average voice model
is trained as the initial model using training data from each
speaker in a multi-speaker speech database. A decision-tree-
based context clustering technique is subsequently applied
separately to the spectral and pitch parts of the average voice
HMMs. Since it is impossible to prepare training data which
cover all possible context-dependent units, a context clustering
technique needs to be applied. This technique is used to cluster
HMM states and share model parameters among states in each
cluster. State duration distributions of the average voice model
are obtained in the same way by applying the same clustering
technique [4].

The average model is used to bootstrap the speaker adapta-
tion process. The average voice model plays a crucial role
in the adaptation process whereby the voice characteristics
and fundamental frequency of the average voice model are
simultaneously transformed into that of a target speaker using
only a small amount of speech data uttered by the target
speaker (adaptation data) [7]. This transformation is performed
by first calculating feature vectors from the adaptation data.
The average voice HMMs are then transformed into the target
speaker HMMs by applying a speaker adaptation technique.

MLLR (Maximum likelihood linear regression) adaptation
is usually applied for the adaptation of spectral and Fj
features. In practice, several linear regression functions can be
applied and are typically derived from the MLLR and max-
imum a posteriori (MAP) algorithms. Constrained Structural
Maximum a Posteriori Linear Regression (CSMAPLR) is one
of the most recently proposed approaches and has proven to
generate the best quality adapted synthetic speech [17].

Finally, during the synthesis part, HMMs are concatenated
according to the arbitrary input text given to the synthesiser.
First, a phoneme sequence is constructed by the front-end.
Then an utterance HMM is constructed by concatenating
the relevant context-dependent HMMs. The state durations
of the utterance HMM are then determined based on state
duration densities. A parameter generation algorithm sub-
sequently generates the sequence of spectral and excitation
parameters that maximize their output probabilities. Usually,



a maximum likelihood (ML) criterion is used to estimate
the model parameters [13]. Lastly, a speech synthesis filter
such as the mel log spectrum approximation (MLSA) filter is
used to synthesise the speech waveform using the generated
parameters [18].

In [17], it was shown that using the average-voice speech
synthesis approach, natural speech could be obtained for
an adult target speaker using as little as 100 utterances of
adaptation data. This corresponds to approximately six minutes
of speech data. In addition, the synthetic voices generated
by adapted models were compared with synthetic speech
generated by a conventional, speaker dependent HMM-based
speech synthesis system and their results showed that using
average-voice based synthesis produced more natural sounding
synthetic speech than the speech produced by a speaker
dependent system.

This observation was said to be the result of a data rich
average voice model that provides strong prior knowledge
for speech generation with the adaptation data being used to
estimate speaker specific characteristics. The average voice
model utilizes a large variety of contextual information in-
cluded in the multi-speaker database as a priori information
for speaker adaptation and therefore provides a robust basis
for synthesizing speech for a new target speaker. As a result,
synthetic speech of the target speaker can be obtained robustly
even if only a limited number of speech samples are available
for the target speaker.

B. HMM adaptation applied to child speech synthesis

One of the major challenges in the development of child
speech synthesis systems is data collection. Finding children
who are willing and/or able to record many hours of useful
data is one of the first problems faced. If a suitable candidate
can be found, the speech data that can be obtained is usually
too little and invariably contains imperfections that are not
suitable to synthesise a high quality voice [8]. Therefore, in
order to synthesise child speech, an approach that can handle
a limited amount of speech data is required. Fortunately,
the adaptation ability of HMM-based synthesis provides a
promising solution. HMM adaptation has been widely used
to synthesise adult voices but very little work has been done
to create children’s voices using this technique.

Even though HMM adaptation is a viable solution, the
scarcity of child speech data still poses a challenge to speech
synthesis using HMM adaptation because the available data is
usually insufficient to train an initial average child model. As
a result, initial models in child speech synthesis are most often
trained with adult speech data [8], [9]. Using this approach,
child voices have been successfully synthesised. However, the
quality of these voices are not suitable for commercial or real-
world applications.

In [9], it was shown that using a gender-independent initial
model yielded better results for child speech synthesis than
using gender-dependent initial models. This observation is
in contrast with results that were obtained in studies on
adult speech synthesis where gender-dependent initial models
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were found to perform better than their gender-independent
counterparts[17].

In [10], it was observed that the distance between the
average voice model and the target speaker can affect the
quality of the resulting adapted voices. This result implies
that the use of an adult average voice model for adaptation
to a child target speaker in itself will result in poor results.
However, if training data is only selected from the adult
speakers that are closest to the target speaker, then the overall
voice quality could be improved.

A correlation between naturalness and closeness between
the average voice model and adapted target model was found
in [10]. This result was specific to adult speech synthesis using
gender-dependent initial models and the correlation was weak.
Research by Yamagishi and Watts has led to the conclusion
that HMM adaptation provides the best solution for child
speech synthesis, due to its ability to perform well with limited
data [17], [19]. However, there is a need to improve the
methods for the selection of training speakers to train a gender-
independent initial model such that HMM adaptation can be
applied successfully in child speech synthesis and yield better
quality synthetic child voices.

C. Objective measures of synthetic voice quality

Subjective listening tests are typically used to evaluate
synthetic speech. Numerous objective methods to accurately
predict subjective listening scores have been proposed over
the last few decades. However, only a few have demonstrated
the capability to do so [20]. No single objective method has
proven to be sufficiently reliable to evaluate synthetic speech.

A popular objective measure of the accuracy of the spec-
tral envelope of synthetic speech is the average mel-cepstral
distance (MCD). The distance is computed as the Euclidean
distance between the mel-cepstral parameters of two speech
samples.

The objective measure used to quantify the accuracy of the
Iy contour generated by the model is the root-mean-square-
error (RMSE) of logFy. Since the Fj is only observed in
voiced regions, the RMSE of logF, is only calculated for these
regions.

III. EXPERIMENTS AND RESULTS

This section describes the data, experimental set-up and the
evaluation procedures that were followed during the investiga-
tion. MCD and RMSE of logF; were used to determine how
close each of the speakers and different speaker combinations
are to the target speaker. The objective evaluations obtained
in this manner were subsequently compared to the results of
a formal listening test. The aim was to determine whether the
results of the objective measures will correspond to the results
of the subjective evaluation.

A. Speech data

The speech data used to train the average voice model in
this study was selected from the CMU-ARCTIC database [21].
This database consists of six speakers, each of whom read the



same sentence set of 1131 phonetically balanced sentences.
The sentence set corresponds to approximately 1.5 hours of
speech data per speaker.

Four speakers were selected from the CMU-ARCTIC
database and used to train the average voice models for this
study. The average models were adapted to a South African
English male child target speaker using 100 sentences as
adaptation data. The child data was collected during a previous
study [9] and amounts to 8 minutes of speech.

B. Experimental setup

Four speaker dependent voices were built, one for each of
the four training speakers. Each of these voices were then
adapted to the target speaker. A US phoneset was used for
both the training and target speakers. Using the four training
speakers, each speaker was paired with every other speaker,
resulting in six additional voices, of which four were gender-
independent and two were gender-dependent. The speaker
combinations and resulting voices are summarised in Table I.

TABLE I: Combinations of training speakers

Speaker 1 | Speaker 2 | Voice ID
bdl rms bdl_rms
bdl clb bdl_clb
bdl slt bdl_slt
rms clb rms_clb
rms slt rms_slt
clb slt clb_slt

C. Objective Evaluation

Forty test sentences were synthesized for each voice. The
test sentences were taken from children stories that were not
included in the training or adaptation data. The mel-cepstral
distance and the RMSE for logFy were calculated for each of
the voices listed in Table I. The distance between the output
generated by the initial model and the output generated by the
adapted model was calculated. Dynamic Time Warping (DTW)
was applied to ensure that the temporal differences between
the two samples did not influence the distance measures.

1) Results: The objective distance measures corresponding
to the speaker dependent and speaker independent models are
shown in Tables II and III respectively.

TABLE II: Objective measures calculated for speaker depen-
dent models

Speaker | Average MCD [db] | Average RMSE logFy [cent]
bdl 2.94 55
rms 2.54 76
clb 2.12 14
slt 2.79 18

According to the results presented in Table II, the speaker
who is closest to the target speaker in terms of mel-cepstral
distance is clb followed by rms. In terms of RMSE of logFy,
clb and slt were found to be the closest to the target speaker.
The result obtained for RMSE for logF, is as expected because
children are known to have higher fundamental frequency
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ranges that are closer to those of female voices than male
voices. Therefore, for the remainder of the study, only the
MCD measures were used.

TABLE III: Objective measures calculated for speaker inde-
pendent models

Voice Average MCD [db] | Average RMSE logF{ [cent]
bdl_rms 2.11 68
bdl_clb 2.22 31
bdl_slt 2.36 36
rms_clb 1.79 45
rms_slt 2.01 47
clb_slt 2.05 16

Since [9] showed that the best initial model for child speech
synthesis is a gender-independent model, the hypothesis tested
in this study was that the closest female speaker and closest
male speaker combination would result in the best gender-
independent initial model. From the objective results presented
in Table III, it is evident that the speaker combination that
yields the smallest average MCD to the target speaker is
rms_clb. This confirms that the hypothesis made is valid in
terms of this objective measure.

In a similar manner it was expected that the clb_slt com-
bination would result in the smallest RMSE Fy distance and
bdl_rms in the biggest distance between the average voice
model and the target speaker. This hypothesis is also confirmed
by the results in Table III. In both cases, the closest voices
(rms_clb and clb_slt, respectively) are substantially different
from the remaining voices.

D. Subjective Evaluation

Subjective evaluations were conducted using formal percep-
tual listening tests that were administered via a web interface.
The participants were 19 adult listeners native to South Africa.
The key properties that were evaluated included user prefer-
ence, naturalness and intelligibility. The listening test therefore
consisted of the following sections:

1) Paired comparison test to evaluate user preference.

2) Mean-Opinion-Score (MOS) test to evaluate naturalness.

3) Transcription test to evaluate intelligibility.

One hundred test sentences from children stories were
synthesized using each speaker independent voice adapted
to the child target speaker. The test sentences were taken
from children stories that were not included in the training
or adaptation data.

A paired comparison test was conducted to determine user
preference. In this test, each participant listened to a total of
30 voice samples. Every question comprised of two samples,
one from each of the six speaker combinations. In this way
every voice combination could be compared with another voice
at least twice in the total set of questions. All samples were
ordered randomly. The listener was required to select either
‘Sample A’, ‘Sample B’ or ‘Sounds the same’.

A MOS listening test was conducted to evaluate naturalness.
The participants were required to listen to 33 voice samples
in total of which five corresponded to one of the six speaker



combinations. They were asked to rate each sample based on
its naturalness. The rating was performed in terms of a 5-
point scale. The points of the scale were defined as follows:
1 - Completely Unnatural, 2 - Unnatural, 3 - Slightly natural,
4 - Natural and 5 - Completely Natural. Among the samples,
three natural samples of the target child speaker were included
as a benchmark.

Intelligibility was evaluated by asking the participants
to listen to the adapted speech samples and transcribe the
audio. 30 semantically predictable sentences (SPS) were
transcribed per listener, of which five random samples
corresponded to each speaker combination model. Research
on child speech synthesis has shown that children’s speech
is very difficult to interpret with semantically unpredictable
sentences, which is the conventional form of sentences used
in these types of tests. Therefore semantically predictable
sentences were used during the evaluations conducted in
[8]. Similarly, semantically predictable sentences were also
used in this study. Using these transcribed sentences, average
word error rate (WER) was calculated for each model. The
transcription WER is calculated using the formula provided
in the Blizzard 2007 challenge guidelines [22]. Spelling
mistakes and typographical errors were corrected before the
WER was calculated.

1) Results:

a) User preference: The results of the user preference
test are summarised in Figure 2. The results indicate that
rms_slt was the most preferred voice with many more votes
than any of the other voices. The least preferred voice was
bdl_clb.

Preference Listening Test
30
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15

Percentage (%)

10

5

0

BDL_RMS

BOL.CLB  BDLSLT  RMSCLB  RMSSLT  CLBSLT SAME

Voicename

Fig. 2: Subjective evaluation: Preference listening test

b) MOS test: The results of the MOS test are presented
in Figure 3 in a standard boxplot. The median is represented
by a solid bar across the middle of the box, whiskers extend to
1.5 times the inter-quartile range and outliers are represented
with circles.
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Fig. 3: Subjective evaluation: MOS test results

The results of the MOS test clearly indicate that the voice
that was considered to be the most natural of the six voices is
rms_slt with a median of 3 (which means the voice overall is
considered to be slightly natural). Given that a few listeners
evaluated the original recording of the target speaker as natural
(which is a score of 4), the overall result of the adapted
synthetic voice could be regarded as a positive one. The voice
that performed the worst is bdl_rms. Even though it had a
median of 2 like the other voices, majority of its votes lie in
the region of 1 and 2.

c) Intelligibility: The results of the intelligibility test
were quantified in terms of the word error rate (WER) that
occurred in every transcribed sentence (with typographical
errors and spelling errors corrected). The WERs corresponding
to the different voices are illustrated in Figure 4. The results
show that rms_clb performed the best, followed by rms_slt and
clb_slt with a negligible difference between them. It is clear
that rms_clb is the most intelligible as it leads with a 5% WER
from the other two voices that follow. Bdl_rms performs the
Worst.

IV. CORRELATION BETWEEN OBJECTIVE AND SUBJECTIVE
MEASURES

An analysis of the two sets of results reveals that the
objective results directly correlate with the results obtained
for the intelligibility test. The rms_clb voice performed the
best in the intelligibility test with a WER of 14.11%. It is
the voice combination of the two closest speakers in the test
set and individually they are also the closest male and closest
female voices from the test set.

Rms_slt performed better than rms_clb in terms of natural-
ness but rms_clb follows closely. Rms_slt was also the most
preferred voice but by closely analysing the results it was noted
that the least preferred is voice is bdl_clb. Both these voices
correlate directly with the results obtained in the naturalness
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Fig. 4: Subjective evaluation: Transcription test results

test and thus it can be assumed that the preference test was
biased towards naturalness.

Overall, when it comes to integrating these voices in real-
world applications, the intelligibility of the voice will always
be more important than the naturalness. In this case the voice
that performed the best objectively outperformed the other
voices in the subjective test for intelligibility and only fell
slightly short in terms of naturalness.

V. CONCLUSION AND FUTURE WORK

The results of this study revealed a correlation between
the average mel-cepstral distance between the average voice
model and the adapted voices and the overall intelligibility
of the voices. Average MCD was also found to be somewhat
correlated with the naturalness. This finding will be useful
especially when attempting to synthesise child voices with
a larger database of adult speech data. It will also improve
the development of child voices because researchers can use
this objective measure to determine whether specific training
speakers can be clustered together to obtain average voice
models that will improve the quality of the resulting child
voice.

Further investigations are being conducted to determine
whether the same measures can be used to select suitable
training data from automatic speech recognition corpora [23]
and whether the observed results generalise to other corpora
of adult speech.

REFERENCES

[1] A. J. Hunt and A. W. Black, “Unit selection in a concatenative
speech synthesis system using a large speech database,” in Acoustics,
Speech and Signal Processing, 1996. ICASSP’96. IEEE International
Conference on, vol. 1, pp. 373-376, IEEE, 1996.

[2] J. Yamagishi, T. Kobayashi, M. Tachibana, K. Ogata, and Y. Nakano,
“Model adaptation approach to speech synthesis with diverse voices and
styles,” in Acoustics, Speech and Signal Processing, 2007. ICASSP’07.
IEEE International Conference on, vol. 4, pp. IV-1233, IEEE, 2007.

[3] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura,
“Speech synthesis based on hidden Markov models,” Proceedings of the
IEEE, vol. 101, no. 5, pp. 1234-1252, 2013.

[4] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Simultaneous modeling of spectrum, pitch and duration in HMM-based
speech synthesis,” in EUROSPEECH, vol. 5, pp. 2374-2350, September
1999.

978-1-5090-3334-5/16/$31.00 (©2016 IEEE

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

M. Tamura, T. Masuko, K. Tokuda, and T. Kobayashi, “Speaker adap-
tation for HMM-based speech synthesis system using MLLR,” in The
Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis, 1998.
J. Yamagishi, B. Usabaev, S. King, O. Watts, J. Dines, J. Tian, Y. Guan,
R. Hu, K. Oura, Y.-J. Wu, et al., “Thousands of voices for HMM-based
speech synthesis — Analysis and application of TTS systems built on
various ASR corpora,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 18, no. 5, pp. 984-1004, 2010.

J. Yamagishi, Average-voice-based speech synthesis. PhD thesis, Tokyo
Institute of Technology, 2006.

O. Watts, J. Yamagishi, K. Berkling, and S. King, “HMM-based syn-
thesis of child speech,” in Proceedings of The 15t Workshop on Child
Computer and Interaction., (Crete, Greece), October 2008.

A. Govender, F. de Wet, and J. R. Tapamo, “HMM adaptation for
child speech synthesis,” in INTERSPEECH 2015, (Dresden,Germany),
pp. 1640-1644, September 2015.

J. Yamagishi, O. Watts, S. King, and B. Usabaev, “Roles of the
average voice in speaker-adaptive HMM-based speech synthesis,” in
INTERSPEECH, pp. 418-421, September 2010.

H. Zen, T. Nose, J. Yamagishi, S. Sako, T. Masuko, A. W. Black, and
K. Tokuda, “The HMM-based speech synthesis system (HTS) version
2.0,” in Proc. of 6th ISCA Workshop Speech Synthesis, pp. 294-299,
August 2007.

L. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp. 257-286, 1989.

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura,
“Speech parameter generation algorithms for HMM-based speech syn-
thesis,” in Acoustics, Speech and Signal Processing, 2000. ICASSP’00.
IEEE International Conference on, vol. 3, pp. 1315-1318, IEEE, 2000.
J. Yamagishi, H. Zen, Y.-J. Wu, T. Toda, and K. Tokuda, “The HTS-
2008 system: Yet another evaluation of the speaker-adaptive HMM-
based speech synthesis system in the 2008 Blizzard Challenge,” in Proc.
Blizzard Challenge 2008, September 2008.

T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, “An adaptive algorithm
for mel-cepstral analysis of speech,” in Acoustics, Speech, and Signal
Processing, 1992. ICASSP’92, IEEE International Conference on, vol. 1,
pp. 137-140, IEEE, 1992.

D. Arifianto, T. Tanaka, T. Masuko, and T. Kobayashi, “Robust esti-
mation of speech signal using harmonicity measure based on instanta-
neous frequency,” IEICE TRANSACTIONS on Information and Systems,
vol. 87, no. 12, pp. 2812-2820, 2004.

J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Isogai,
“Analysis of speaker adaptation algorithms for HMM-based speech
synthesis and a constrained SMAPLR adaptation algorithm,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 17, no. 1,
pp. 66-83, 2009.

S. Imai, “Cepstral analysis synthesis on the mel frequency scale,”
in Acoustics, Speech and Signal Processing, 1983. ICASSP’S83. IEEE
International Conference on, vol. 8, pp. 93-96, IEEE, 1983.

O. Watts, J. Yamagishi, S. King, and K. Berkling, “Synthesis of child
speech with HMM adaptation and voice conversion,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 18, no. 5, pp. 1005—
1016, 2010.

R. F. Kubichek, “Mel-cepstral distance measure for objective speech
quality assessment,” in Communications, Computers and Signal Pro-
cessing, 1993., IEEE Pacific Rim Conference on, vol. 1, pp. 125-128,
IEEE, 1993.

J. Kominek and A. W. Black, “The CMU arctic speech databases,” in
Fifth ISCA Workshop on Speech Synthesis, 2004.

R. Clark, M. Podsiadlo, M. Fraser, C. Mayo, and S. King, “Statistical
analysis of the Blizzard challenge 2007 listening test results,” Proc.
BLZ3-2007 (in Proc. SSW6), 2007.

A. Govender, B. Nouhou, and F. de Wet, “HMM adaptation for child
speech synthesis using ASR data,” in Pattern Recognition Association of
South Africa and Robotics and Mechatronics International Conference
(PRASA-RobMech), 2015, pp. 178183, IEEE, 2015.



	Objective measures to improve the selection of training speakers in HMM-based child speech synthesis - Avashna Govender and Febe de Wet

