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Coherence Optimization and Its Limitations
for Deformation Monitoring in Dynamic

Agricultural Environments
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Abstract—Differential interferometry techniques are well
known for its ability to provide centimeter to millimeter scale de-
formation measurements. However, in natural and agricultural
areas, the presence of vegetation and the evolution of the land
surface introduce a phase noise component which limits success-
ful interferometric measurement. This paper aims to address the
known limitations of traditional dInSAR in the presence of distur-
bances to reflected signals due to agricultural activities by testing
the polInSAR technique for its ability to increase interferometric
coherence and to detect surface movement in the areas of interest.
Both fully polarimetric RADARSAT-2 and ALOS PALSAR data
were subject to coherence optimization using the multiple scat-
tering mechanism (MSM) approach. For C-band RADARSAT-2
data, coherence optimization resulted in a statistically significant
increase in interferometric coherence. However, the spatial het-
erogeneity of the scattering process and how it changes over time
caused random phase changes associated with temporal baseline
effects and the evolution of the land surface. These effects could
not be removed from C-band interferograms using the MSM ap-
proach. Therefore, coherence optimization resulted in an increase
in the random speckle in interferograms reducing the ability to
derive high confidence interferometric measurements, indicating
a drawback in the MSM approach to coherence optimization. On
the other hand, coherence optimization on L-band data demon-
strated an increase in the spatial homogeneity of the speckle noise
suggesting that the MSM approach to coherence optimization on
L-band data may be more successful in enhancing the ability to
extract deformation measurements in dynamic agricultural re-
gions. In general, a good agreement in deformation measurements
derived from dInSAR and polInSAR techniques was observed.

Index Terms—Coherence optimization, polInSAR, subsidence
monitoring.

I. INTRODUCTION

SURFACE deformation due to underground mining poses
risks to health and safety as well as infrastructure and

the environment. Consequently, the need for long-term oper-
ational monitoring systems exists. Traditional field-based mea-
surements are point-based meaning that the full extent of de-
forming areas is poorly understood. Field-based techniques are
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also labor intensive if large areas are to be monitored on a
regular basis. Radar interferometry techniques are well known
for their ability to accurately detect and measure centimeter
to millimeter scale surface deformation. The maturity of dIn-
SAR has, in principle, overcome the limitations associated with
field-based techniques and has been extensively used for its
ability to monitor deformation over large areas, remotely. The
operational limitations of dInSAR deformation measurements
in commercial agricultural environments were tested using real-
world deformation phenomena as test-case [1]–[4]. The results
revealed that the biggest limitation of dInSAR was the presence
of signal noise as a result of temporal and geometric conditions
at the time of image acquisition as affirmed by others [5], [6].

Temporal decorrelation can result from a change in the po-
sition of the scatterer as well as changes in the scattering char-
acteristics of the target. These include changes in the shape,
orientation, and dielectric constant of the scatterer [6]. In a dy-
namic commercial agricultural region, for instance, the evolu-
tion of the land surface is quite pronounced with activities such
as tilling, crop growth, and harvesting significantly altering the
observed surface. These changes also affect the radar backscat-
ter return which induces an incoherent change in the signal [7],
[8]. This results in decorrelation of the signal, the severity of
which depends on the wavelength and polarization of the sig-
nal. The decorrelation tends to increase with an increase in the
timeframe between image acquisitions (temporal baseline) [2],
[4], [9], [10]. However, decorrelation can also occur over short
time periods where the random movement of leaves and twigs
of vegetation implies that scattering elements are continuously
rearranged, causing signal decorrelation [11]. Therefore, higher
vegetation densities will be more prone to decorrelation effects
and interferometric coherence will decrease rapidly with time
[11]. Consequently, temporal decorrelation effects make dIn-
SAR measurements challenging over vegetated areas [12]. In
fact, dInSAR studies in agricultural environments found that,
using C-band RADARSAT-2 data, very short temporal base-
lines would be needed for successful interferometric measure-
ment even after the peak of the growing season when vegetation
densities were lower. However, during the peak of the growing
season, dInSAR measurement using even the shortest possi-
ble temporal baselines (24-days for the RADARSAT-2 data in
question) was limited due to signal decorrelation by vegetation.
Although longer temporal baselines could be used with longer
wavelength L-band data, decorrelation of the signal due to tilling
and harvesting was still evident [1], [2]. Therefore, the ability to
overcome the temporal decorrelation effects, especially during
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TABLE I
SATELLITE DATA AND DATES OF IMAGE ACQUISITION

Data source Acquisition date Data source Acquisition date

ALOS PALSAR 2008/10/27 Radarsat-2 2011/08/06
ALOS PALSAR 2009/04/29 Radarsat-2 2011/08/30
ALOS PALSAR 2009/10/30 Radarsat-2 2011/09/23
Radarsat-2 2011/01/26 Radarsat-2 2011/10/17
Radarsat-2 2011/02/19 Radarsat-2 2011/11/10
Radarsat-2 2011/03/15 Radarsat-2 2011/12/04
Radarsat-2 2011/04/08 Radarsat-2 2011/12/28
Radarsat-2 2011/05/02

the peak of the growing season, would be needed for successful
deformation measurement in agricultural environments.

The sensitivity of interferometric coherence to variations in
the height and density of vegetation has been described in several
investigations [13], [14]. To overcome the temporal decorrela-
tion effects on dInSAR measurements, several advanced algo-
rithms have been developed. These techniques rely either on
the selection of pixels demonstrating ideal behavior to focus
on for further processing [5], [12], [15]–[19], or the techniques
are designed to directly enhance interferometric coherence [6],
[14], [20]–[25]. Techniques that focus on pixels that remain
coherent over the entire stack of interferograms include the
persistent scatterers interferometry (PSI) and Small BAseline
Subset (SBAS) techniques [5], [12]. However, in vegetated re-
gions, the coherent or stable reflectors required when using these
techniques are unavailable. To overcome this limitation, recent
advances, including the SqueeSAR approach, have focused on
incorporating the analysis of distributed targets in the coherent
target algorithms, increasing the density of measurements in
nonrural areas [19]. Alternatively, since the change in the scat-
tering geometry that results in signal decorrelation also leads to
a change in the polarimetric response in two SAR images, the in-
troduction of SAR polarimetry into conventional interferometry
has also been proposed. The combination of radar polarimetry
and radar interferometry, known as polInSAR, enables the de-
velopment of coherence optimization algorithms to improve the
quality of interferometric measurements [13], [21]–[24], [26].
Coherence optimization is achieved by identifying the scatter-
ing mechanism that leads to the highest possible coherence and,
consequently, the scattering mechanism providing the best phase
estimates [21].

This paper aims to address the known limitations of tra-
ditional dInSAR in the presence of disturbances to reflected
signals due to agricultural activities by testing the polInSAR
technique, with the particular focus on the multiple scattering
mechanism (MSM) approach to coherence optimization, for its
ability to increase interferometric coherence and to detect sur-
face movement in dynamic agricultural environments. For this
purpose, 12 fully polarimetric RADARSAT-2 (Fine Quad Polar-
ization, Beam mode FQ16) and three fully polarimetric ALOS
PALSAR scenes were acquired. The dates of image acquisition
are presented in Table I. This paper describes the characteris-
tics of the study area in Section II, and Section III discusses
advanced dInSAR techniques. Section IV presents the results of

Fig. 1. (A) RADARSAT-2 H-A-alpha classification revealing the dominant
scattering mechanisms over time. (B) Dominant scattering mechanisms for
ALOS PALSAR data over time.

polInSAR coherence optimization for deformation monitoring
and discusses its successes or failures. The concluding remarks
and considerations for future research are provided in Section V.

II. INTRODUCTION TO THE STUDY AREA AND PREVIOUS

OBSERVATIONS

The area focused on in this investigation is situated in a coal
mining region in the Mpumalanga Province of South Africa
which is also subject to commercial agricultural activities [2],
[4]. The exact location of the area is not disclosed due to op-
erational sensitivity. Surface subsidence associated with near-
surface coal mining in the area is a known concern and con-
ventional dInSAR on both L-band and C-band data has been
used successfully to detect and monitor surface deformations
[1], [2], [4]. The surface land use is associated with commercial
agricultural activity [4]. The main crop types include maize,
sunflowers, and soya in addition to pasture. Planting of crops
usually takes place between October and the end of November.
Both soya and sunflowers ripen by the end of March, at which
time the leaves of the plants disintegrate, significantly lowering
the vegetation biomass. Maize is usually harvested in June ex-
cept in cases where the maize is used as fodder, when harvesting
can take place earlier. When maize ripens, plant leaves do not
disintegrate as is the case with sunflower or soya which means
that the plant retains its biomass until harvesting [4].

Previous investigations considered the limitations of conven-
tional dInSAR approaches for deformation measurement in the
area of interest using RADARSAT-2 and ALOS PALSAR data
[1], [3], [4]. The dynamic agricultural nature of the area under
investigation meant that temporal decorrelation effects had a
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significant impact on interferometric coherence and was consid-
ered to be the biggest limitation for successful deformation mea-
surement [2]. The temporal dynamics was further investigated
by analyzing the change in the polarimetric behavior exhibited
in the area over time using the H-A-alpha classification scheme
[27]. For RADARSAT-2 data, volume scattering mechanisms
dominated during the peak of the growing season after which
surface scattering mechanisms dominated until the start of the
next growing season was reached [see Fig. 1(A)]. For the periods
during which surface scattering dominated, surface scattering
mechanisms varied between medium entropy surface scattering
and low entropy scattering. Generally, medium entropy surface
scattering dominated with the exception of periods where fields
were fallow during which dominance of low entropy scattering
mechanisms was observed. On the other hand, the scattering
mechanisms for longer wavelength PALSAR data were dom-
inated by surface scattering mechanisms independently of the
time of year [see Fig. 1(B)]. This was expected since the longer
wavelength radiation penetrates through vegetation maximizing
interaction with the surface. The analysis suggests that signifi-
cant changes in dominant scattering mechanisms over time were
observed with RADARSAT-2 data although the dominant scat-
tering mechanisms remained constant when longer wavelength
ALOS PALSAR data were considered.

III. ADVANCED DINSAR APPROACHES FOR DEFORMATION

MEASUREMENT

To overcome the problems associated with temporal and
geometric decorrelation and atmospheric artefacts, several ad-
vanced interferometric processes have been developed [5], [12],
[15], [16], [18]. Techniques that focus on pixels that remain
coherent over the entire stack of interferograms include the PSI
and SBAS techniques [5], [12]. The coherent pixels are stable
natural reflectors usually corresponding to man-made structures
or rock-outcrops [12], [28] meaning that in vegetated, nonurban
areas, the density of coherent pixels may be very low limiting
the viability of the SBAS and PSI techniques in these areas
[6], [17]. To increase the quality of measurements in nonurban
areas, recent advances, including the distributed scatterers in-
terferometry [29] and the SqueeSAR approach [19], [30], have
focused on including the analysis of distributed targets. The
joint processing of distributed and coherent targets, as imple-
mented in the SqueeSAR algorithm [19], results in a significant
increase in the density and quality of measurement points in
nonurban regions [19], [31]. However, the distributed targets
are associated with statistically homogeneous pixels and are
generally associated with debris areas, noncultivated land with
very sparse vegetation and desert areas [19], [30], suggesting
limited applicability in agricultural fields.

As an alternative to the analysis of pixels demonstrating ideal
behavior, techniques to directly enhance coherence have also
been proposed. Temporal decorrelation not only has an effect
on the interferometric coherence, but also leads to different po-
larimetric responses in two SAR images [10], [20]. Therefore,
the introduction of polarimetry into conventional interferome-
try has been proposed [32]. These advanced dInSAR techniques

have focused on exploiting the polarimetric properties of SAR
signals to maximize interferometric coherence as opposed to
merely selecting the high coherence targets for further process-
ing [10], [22]. The sensitivity of backscatter in different polar-
izations to the shape, orientation, and dielectric properties of
the scattering elements allows for the identification and separa-
tion of scattering mechanisms by investigating the differences
in polarimetric signatures [14]. Several coherent and incoherent
scattering target decomposition theorems have been developed
with the objective to extract information about scattering behav-
ior from volumes and surfaces [27] allowing the description of
ground/volume scattering scenarios [25]. These target decom-
position theorems have also been introduced in interferometry
to advance the interpretation of interferometric phase in an ef-
fort to minimize temporal decorrelation effects [6], [13], [14],
[20]–[23], [33], [34].

The ability to identify and separate scattering mechanisms
from polarimetric signatures implies that the combination of in-
terferometric and polarimetric information can be used to infer
the interferometric phase of any scattering mechanism and, con-
sequently, the vertical distribution of different scattering mech-
anisms [14], [21], [34]. The combination of radar polarimetry
and radar interferometry is known as polarimetric interferometry
(polInSAR) and the mathematical formulation can be obtained
in various published works [14], [27], [34], [35].

PolInSAR allows for the retrieval of the height of differ-
ent scattering mechanisms present in a resolution cell, even if
one scattering mechanisms dominates over another [25]. Conse-
quently, polInSAR also enables the development of coherence
optimization algorithms to improve the quality of interferomet-
ric measurements [13], [20]–[24], [26], [33]. This is achieved by
identifying the scattering mechanism which leads to the highest
possible coherence and, consequently, the scattering mechanism
providing the best phase estimates [21]. Different approaches
are taken to select the optimal scattering mechanism including
the MSM approach and the equal scattering mechanism (ESM)
approach [21].

The ESM optimization process involves the simultaneous
search for the optimized coherence and the corresponding scat-
tering mechanism [23] with the constraint that ESMs are se-
lected [6], [23], [33]. The ESM approach ensures the selection
of equal polarimetric signatures on a pixel-by-pixel basis rep-
resenting the overall dominant scattering mechanism [6], [23],
[33]. The drawback of the ESM approach is that it assumes
that the polarimetric behavior across datasets do not change
[23] which implies that small temporal and perpendicular base-
line datasets are needed [33]. In cases where a large amount of
temporal decorrelation exists, the polarimetric behavior of sur-
faces can change significantly, leading to an insufficient number
of scatterers exhibiting the same behavior. This can limit the
effectiveness of this approach [33], [36]. Therefore, the ESM
approach is constrained to areas that do not undergo significant
changes in the polarimetric behavior over time.

In the case of strong temporal dynamics of an area under in-
vestigation, the MSM approach has been recommended as the
preferred approach to coherence optimization [23]. Since signif-
icant changes in the polarimetric behavior of the area of interest
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Fig. 2. Comparison of dInSAR interferogram and coherence optimized inter-
ferograms for (A) the 2011/08/06–2011/08/30 RADARSAT-2 interferometric
pairs and (B) 2008/10/27–2009/04/29 ALOS PALSAR data.

[see Section II and Fig. 1(A)] as well as temporal decorrela-
tion effects (Section II, [4]) are present due to the agricultural
nature of the area of interest, the MSM optimization was con-
sidered in this investigation. In contrast to the ESM approach,
the MSM approach relies on the identification of the scattering
mechanisms that provide the highest possible coherence, with
the assumption that the scattering mechanism that provides the
highest possible interferometric coherence can vary between
neighboring pixels. Therefore, different scattering mechanisms
can contribute to the optimal phase [6], [23], [24], [33].

The MSM approach to coherence optimization was per-
formed on both RADARSAT-2 and ALOS PALSAR fully po-
larimetric data. The resulting interferometric coherence and
deformation data were compared to the results obtained by con-
ventional dInSAR techniques (presented in Section IV) to deter-
mine the success or limitations of these approaches for long-term
deformation measurement strategies (presented in Section V).

IV. DATA PROCESSING AND COHERENCE OPTIMIZATION

RESULTS

To assess the ability of coherence optimization algorithms
to increase interferometric coherence in the agricultural area of
interest, the MSM technique for coherence optimization was
used. The selection of the MSM technique was governed by
the fact that polarimetric analysis of the RADARSAT-2 data re-
vealed that the dominant scattering mechanisms are highly vari-
able over time [4] (see Section II). The result of the coherence

Fig. 3. (A) Frequency distribution of average scene coherence values for dIn-
SAR (HH) processing and the maximum (polInSAR max), minimum (polInSAR
min), and intermediate (polInSAR med) results. (B) CV of coherence values for
polInSAR and dInSAR results.

optimization algorithm is three interferograms, representing
high, medium, and low coherence products. The interferograms
were constructed by identifying the dominant scattering mech-
anisms and separating those representing the highest coherence
values from the scattering mechanisms exhibiting intermedi-
ate and low coherence values. By selecting only the scattering
mechanisms leading to the highest possible coherence, the best
phase estimates are obtained. The interferograms generated for
the RADARSAT-2 2011/08/06–2011/08/30 interferometric pair
are displayed in Fig. 2(A) where the dInSAR interferogram is
displayed alongside the max (maximum coherence), med (in-
termediate coherence), and min (minimum coherence) interfer-
ograms generated by polInSAR. Similarly, the ALOS PALSAR
interferograms generated between 2008/10/27 and 2009/04/29
are displayed in Fig. 2(B). Visual inspection of the resulting
interferograms suggests that noisy areas in interferograms gen-
erated by dInSAR remain noisy on the interferograms generated
by coherence optimization using polInSAR techniques.

To further explore this observation, the interferometric co-
herence calculated by conventional dInSAR techniques was
compared to the interferometric coherence generated by the
polInSAR techniques. The frequency distribution of the aver-
age scene coherence for dInSAR and polInSAR coherence is
presented in Fig. 3(A) for RADARSAT-2 data. For all datasets,
the maximum coherence values obtained by coherence opti-
mization techniques are significantly higher than the coherence
values obtained through conventional dInSAR. However, inter-
ferometric measurement on a single pixel is not sensible since
single pixels can incorporate phase noise in an unpredictable
way. The random nature of the phase noise in interferograms
was estimated by calculating the coefficient of variation (CV) of
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Fig. 4. CV of coherence values for ALOS PALSAR polInSAR and
dInSAR results.

the coherence values for each pixel considering a neighborhood
of 11 by 11 pixels. Lower CV values indicate more homoge-
nous neighborhoods (lower variance) while higher CV values
indicate more heterogeneous data. The CV of coherence val-
ues was calculated for RADARSAT-2 data for the conventional
dInSAR coherence and the maximum coherence result of the
coherence optimization algorithm [see Fig. 3(B)]. The results
indicate that a consistently higher CV of coherence is achieved
after coherence optimization compared to a lower CV without
coherence optimization for RADARSAT-2 data. This suggests
that although polInSAR leads to a statistically significant in-
crease in the average coherence, the effect of random phase
changes is not minimized.

Since only three fully polarimeric ALOS PALSAR scenes
were available for analysis, statistical interpretation of coher-
ence optimization results is not possible. However, for the
PALSAR data, a significant decrease in CV of coherence is
observed for the coherence optimized data compared to con-
ventional dInSAR coherence data (see Fig. 4). This suggests
that polInSAR coherence optimization on L-band data may
provide both an increase in the interferometric coherence and
the decrease in the random phase changes between neighbor-
ing pixels that is required for high confidence interferometric
measurement.

To compare the deformation measurements achieved for
dInSAR and polInSAR approaches, the average deformation
measurements were extracted for each of the deformation
features observed. The average measured vertical deformation
for dInSAR and polInSAR results is displayed, graphically,
in Fig. 5. Unfortunately, a lack of in situ measurements for
the observation period means that an assessment of whether
dInSAR or polInSAR results were more accurate could not
be made. However, the differences between polInSAR and
dInSAR deformation measurements are low (less than 7 mm
with three exceptions). In general, dInSAR deformation maps
reflect lower vertical displacements compared to the polInSAR
deformation maps. For RADARSAT-2 data, an exception is
observed for the 2011/04/08–2011/05/02 interferograms for
which the measured dInSAR subsidence is higher than polIn-
SAR measurement. It should be noted that the period between
2011/04/08 and 2011/05/02 is associated with an increase in
surface scattering contributions and concurrent decrease in
vegetation scattering contribution [see Fig. 1(A) and Section II].

Fig. 5. Comparison of dInSAR and polInSAR deformation measurements.

The apparent increase in measured deformation for dInSAR
deformation maps may be indicative of a higher phase center on
the stems of the vegetation on the 2011/04/08 scene followed
by a lower phase center on the 2011/05/02 scene where surface
scatterers dominate. The shift in phase center depending on
the height of the dominant scattering mechanism therefore
results in an artificial increase in the measured deformation in
dInSAR results. Since the measured deformation is lower on
polInSAR deformation maps, it is assumed that the change in
phase center does not affect polInSAR deformation maps to
the same degree. It is also observed that the difference between
polInSAR and dInSAR deformation measurements is smaller
for the periods during which surface scattering mechanisms
dominate (between 2011/05/02 and 2011/11/10). An exception
is observed for the 2011/08/06–2011/08/30 interferometric pair
which reflects a difference of 1.2 cm between polInSAR and
dInSAR deformation measurements. This period is associated
with predominantly smooth (low entropy) surface scattering
mechanisms. Therefore, a higher degree of similarity between
dInSAR and polInSAR deformation measurements would be
expected. The large difference is considered to be anomalous
and warrants further investigation.

For ALOS PALSAR results, dInSAR reflects a larger amount
of subsidence for the 2009/04/29–2009/10/30 pair compared
to polInSAR subsidence measurements. Although this time pe-
riod is also associated with a decrease in vegetation scattering
[see Fig. 1(B) and Section II], smooth surface scattering mech-
anisms dominate on both acquisition dates for the long wave-
length data. Therefore, a decrease in scattering phase center
between 2009/04/29 and 2009/10/30 would not be expected.
However, the difference between polInSAR and dInSAR mea-
surements (6 mm) is considered to be small. On the other hand,
the difference between the polInSAR and dInSAR deformation
measurements for the 2008/10/27–2009/04/29 pair is 1.4 cm.
The period is associated with an increase in volume scattering
mechanisms, although low entropy surface scattering remains
dominant on both acquisitions. Therefore, the height difference
between scattering centers would not be expected although it
could explain the perceived decrease in the amount of verti-
cal displacement exhibited by dInSAR compared to polInSAR
deformation maps.
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V. DISCUSSION AND CONSIDERATIONS FOR FUTURE RESEARCH

In this study, coherence optimization was tested for its ability
to increase interferometric coherence in an agricultural area. The
results suggest that although a statistically significant increase
in the average scene coherence was achieved, the CV for polIn-
SAR results on C-band data was consistently higher than the CV
for dInSAR results. This indicates a decrease in the spatial ho-
mogeneity of the phase noise contribution leading to an increase
in speckle noise effects. This decrease in the homogeneity of the
phase noise also translated to the interferometric phase, leading
to increased speckle effects and decreasing the ability to de-
rive high confidence interferometric measurements. In general,
noisy areas in interferograms generated through dInSAR tech-
niques remain noisy on the interferograms generated through
polInSAR techniques. The results suggest that although coher-
ence optimization techniques results in a statistically significant
increase in coherence, especially in the maximum coherence re-
sults, the apparent decrease in phase noise is not translated to the
interferograms generated using the coherence optimization tech-
nique. Despite the apparent increase in the phase heterogeneity
by polInSAR algorithms, there is a good agreement between
the measured vertical deformations derived from dInSAR com-
pared to polInSAR techniques with a mean difference of 6.2 mm
observed. Furthermore, for a period associated with a change
in dominant scattering mechanism from vegetation scattering to
surface scattering, dInSAR results may be affected by an over-
estimation of vertical displacement induced by a change in the
height of the scattering phase center (i.e., a higher phase cen-
ter experienced where volume scattering dominated compared
to where surface scattering dominates). The effect appears to
be minimized when polInSAR results are considered. Although
the number of datasets is insufficient, the results suggest that
for periods coinciding with a change in dominant scattering
mechanism from volume to surface scattering or vice versa,
polInSAR techniques can lead to higher accuracy deformation
measurements.

Where phase noise is concerned, an explanation for the failure
of coherence optimization techniques in minimizing the phase
noise component is the dominant scattering processes in the
scene and how they change between master and slave image ac-
quisitions. Although polarimetric analysis proved that the dom-
inant scattering mechanism for the 2011/08/06 and 2011/08/30
scenes is low entropy surface scattering (see Section II), some
volume scattering contributions and surface roughness prop-
agation effects were also observed. Post-classification change
detection algorithms on the H-A-alpha classification results
were used to highlight the dominant changes in scattering
mechanisms between image acquisitions.

An example of the changes in scattering mechanism between
master and slave image acquisition is presented in Fig. 6 using
a subset of the 2011/08/06–2011/08/30 pair as example. The
results for this pair show that significant changes in the domi-
nant scattering mechanism over time is experienced with Bragg
surface scattering changing to surface roughness propagation ef-
fects being the most dominant change. Surface roughness prop-
agation effects changing to volume scattering (vegetation) are
also observed. The observed changes in scattering mechanism

Fig. 6. Scattering mechanism changes between 2011/08/06 and 2011/08/30
for RADARSAT-2 data. The top row labeling indicates the initial scattering state
on 2011/08/06 as Bragg surface scattering, roughness propagation effects and
vegetation, respectively. The colors indicate the scattering mechanism change
reflected on 2011/08/30.

were spatially heterogeneous and, together with the volume
scattering contributions, introduce random phase changes be-
tween the master and slave image acquisitions which cannot be
removed by polInSAR techniques. Additionally, when the max-
imum coherence image (see Fig. 6) is considered, it is apparent
that the subsiding area is associated with low interferometric co-
herence. The low coherence is due to the deformation between
2011/08/06 and 2011/08/30 exceeding the 2.8 cm per pixel gra-
dient limit imposed by the wavelength of the RADARSAT-2 sen-
sor. This implies that even if the phase contribution from surface
scattering mechanisms could be isolated to provide very high
coherence interferograms, surface deformation exceeding the
gradient limit would continue to cause incoherence and polIn-
SAR is not capable of minimizing the phase noise in these areas.

Although the L-band data are associated with an enhanced
ability to penetrate through vegetation and is predominantly as-
sociated with surface scattering contributions (see Section II),
post classification change detection on the classification based
on scattering mechanism reveals that changes in scattering
mechanisms between master and slave image acquisitions are
still taking place, although to a lesser extent than was observed
for C-band data. In this case, a higher likelihood of selecting the
same scattering mechanism over time may have contributed to a
decrease in the CV of coherence and higher confidence interfer-
ometric measurements on L-band data. Despite the increase in
phase heterogeneity and the lower sensitivity of PALSAR data
to a change in vegetation cover, the mean difference between the
dInSAR and polInSAR deformation measurements was greater
than observed for RADARSAT-2 scenes with a mean difference
of 1.0 cm observed. However, the number of quad-pol ALOS
PALSAR scenes available for analysis was insufficient to draw
accurate conclusions.

The drawback of the MSM technique for differential appli-
cations on C-band data is that the scattering mechanism that
provides the highest possible interferometric coherence can vary
between neighboring pixels and different scattering mechanisms
can contribute to the optimal phase [6], [23], [24]. In fact, it was
observed that in a multibaseline approach to the MSM opti-
mization, varying polarizations in different datasets will have
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to be taken into account [23], [33]. Since different scattering
mechanisms will provide phase measurements at different phase
centers, topographic phase will be incorporated depending on
the scattering mechanism that provides the best coherence [22].
In this investigation, different scattering mechanisms over time
provided phase measurements at different phase centers, intro-
ducing an element of heterogeneity into interferograms derived
from C-band data. On the other hand, coherence optimization
on L-band data demonstrated an increase in the spatial homo-
geneity of the coherence after optimization algorithms were ap-
plied. This suggests that the coherence optimization algorithms
were more likely to select the same scattering mechanism be-
tween neighboring pixels that would lead to more homogeneous
results. Therefore, although the number of fully polarimetric
L-band interferometric pairs was insufficient to be conclusive,
the results suggest that coherence optimization may be more
successful in minimizing phase noise on longer wavelength
data in dynamic agricultural environments. Future activities will
focus on increasing the number of L-band datasets for more
in-depth analysis.

Since the study area in question was shown to exhibit strong
temporal dynamics, the assumption was that the MSM approach
would be successful to optimize coherence and enhance our
ability to measure surface deformation in a dynamic agricul-
tural region. However, the results demonstrated that the het-
erogeneity introduced by selecting different scattering mecha-
nisms in the MSM approach meant that phase noise could not
be entirely eliminated. Therefore, although the polarimetric be-
havior of the dataset in question is not constant as is assumed
when implementing the ESM algorithm, the ESM approach
will be tested for its ability to reduce the spatial heterogeneity
of the phase measurements in future research. Since the ESM
approach involves coherence optimization with the constraint
that ESMs are selected (see Section III), it is believed that the
ESM approach will ensure the selection of equal polarimetric
signatures, thereby increasing intereferometric coherence and
decreasing the random phase changes leading to higher con-
fidence interferometric measurement. It is also recommended
that future research exploits advanced algorithms, such as
the CEASAR algorithm [31], which is similar to SqueeSAR
with the exception that temporal and baseline decorrelation
effects are counteracted by selecting the dominant scattering
mechanism in an interferometric stacking approach [31].
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polarimetrically optimised phases and scattering mechanisms for InSAR
applications,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2007, no. 4,
pp. 2620–2623.

[7] X. Blaes and P. Defourny, “Retrieving crop parameters based on tan-
dem ERS 1/2 interferometric coherence images,” Remote Sens. Environ.,
vol. 88, no. 4, pp. 374–385, 2003.

[8] D. Massonnet and K. L. Feigl, “Radar interferometry and its application to
changes in the Earth’s surface,” Rev. Geophys., vol. 36, no. 4, p. 441–500,
1998.

[9] C. Carnec and C. Delacourt, “Three years of mining subsidence monitored
by SAR interferometry, near Gardanne, France,” J. Appl. Geophys., vol.
43, no. 1, pp. 43–54, 2000.

[10] Z. Perski and D. Jura, “Identification and measurement of mining subsi-
dence with SAR interferometry: Potentials and limitations,” in Proc. 11th
FIG Symp. Deformation Meas., Santorini, Greece, 2003, pp. 1–7.

[11] W. Grey and A. Luckman, “Deriving urban topography from multi-
baseline SAR interferometric phase coherence images,” Eur. Space
Agency, no. 461, pp. 1664–1672, 2000.

[12] A. Ferretti, C. Prati, and F. Rocca, “Permanent scatters in SAR inter-
ferometry,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 1, pp. 8–20,
Jan. 2001.

[13] S. R. Cloude and K. P. Papathanassiou, “Coherence optimisation in po-
larimetric SAR interferometry,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 1997, pp. 1932–1934.

[14] K. P. Papathanassiou and S. R. Cloude, “Single-baseline polarimetric
SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11,
pp. 2352–2363, Nov. 2001.

[15] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm
for surface deformation monitoring based on small baseline differential
SAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11,
pp. 2375–2383, Nov. 2002.

[16] L. D. Euillades, P. A. Euillades, A. Pepe, M. H. Blanco, and J. H. Barón,
“On the generation of late ERS deformation time series through small
Doppler and baseline subsets differential SAR interferograms,” IEEE
Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 238–242, Mar. 2011.

[17] D. L. Galloway and J. Hoffmann, “The application of satellite differen-
tial SAR interferometry-derived ground displacements in hydrogeology,”
Hydrogeol. J., vol. 15, no. 1, pp. 133–154, 2007.

[18] O. Mora, J. J. Mallorqui, and A. Broquetas, “Linear and nonlinear ter-
rain deformation maps from a reduced set of interferometric SAR im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2243–2253,
Oct. 2003.

[19] A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci, “A
new algorithm for processing interferometric data-stacks: SqueeSAR,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 9, pp. 3460–3470,
Sep. 2011.

[20] S. R. Cloude and K. P. Papathanassiou, “Polarimetric SAR interferome-
try,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 5, pp. 1551–1565,
Sep. 1998.

[21] E. Colin, C. Titin-Schnaider, and W. Tabbara, “An interferometric co-
herence optimization method in radar polarimetry for high-resolution im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 1, pp. 167–175,
Jan. 2006.

[22] V. D. Navarro-Sanchez, J. M. Lopez-Sanchez, and F. Vicente-Guijalba, “A
contribution of polarimetry to satellite differential SAR interferometry:
Increasing the number of pixel candidates,” IEEE Geosci. Remote Sens.
Lett., vol. 7, no. 2, pp. 276–280, Apr. 2010.

[23] M. Neumann, L. Ferro-Famil, and A. Reigber, “Multibaseline POLinSAR
coherence modelling and optimization,” in Proc. Int. Geosci. Remote Sens.
Symp., 2007, pp. 2624–2627.

[24] L. Pipia, X. Fabregas, A. Aguasca, C. Lopez-Martinez, and J. J.
Mallorquı́, “Polarimetric coherence optimization for interferometric dif-
ferential applications,” in Proc. Int. Geosci. Remote Sens. Symp., vol. 5,
2009, pp. 146–149.

[25] L. Sagués, J. M. Lopez-Sanchez, J. Fortuny, X. Fabregas, A. Broquetas,
and A. J. Sieber, “Polarimetric radar interferometry for improved mine
detection and surface clutter rejection,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 6, pp. 1271–1278, Jun. 2001.

[26] C. Lopez-Martinez, X. Fabregas, and L. Pipia, “PolSAR and PolInSAR
model based information estimation,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2009, pp. III-959–III-962.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

[27] S. R. Cloude and E. Pottier, “An entropy based classification scheme
for land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote
Sens., vol. 35, no. 1, pp. 68–78, Jan. 1997.

[28] D. Raucoules, C. Colesanti, and C. Carnec, “Use of SAR interferometry
for detecting and assessing ground subsidence,” Comptes Rendus Geosci.,
vol. 339, no. 5, pp. 289–302, 2007.

[29] K. Goel and N. Adam, “A distributed scatterer interferometry approach for
precision monitoring of known surface deformation phenomena,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5454–5468, Sep. 2014.

[30] J. Morgan, G. Falorni, A. Bohane, and F. Novali, Advanced InSAR Technol-
ogy (SqueeSARTM) for Monitoring Movement of Landslides. Lakewood,
CO, USA: Central Federal Lands Highway Division, 2011.

[31] G. Fornaro, S. Verde, D. Reale, and A. Pauciullo, “CAESAR: An approach
based on covariance matrix decomposition to improve multibaseline–
multitemporal interferometric SAR processing,” IEEE Trans. Geosci. Re-
mote Sens., vol. 53, no. 4, pp. 2050–2065, Apr. 2015.
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