The emerging case of nanopollutants in the aquatic environment: analytical challenges for the exposure assessment of silver and zinc oxide nanoparticles

Melusi Thwala and Yolanda Tancu

mthwala@csir.co.za

Water Resources Competence Area,
Natural Resources and the Environment,
Council for Scientific and Industrial Research,
South Africa

Nanotechnology trends

Technology	2011	2012	2017	CAGR%* 2012-2017
Nanomaterials	14,072.9	15,924.8	32,327.5	18.6
Nanotools	6,032.8	4,763.5	11,416.9	19.1
Nanodevices	39.5	45.3	176.2	31.2
Total	20,145.2	20,733.6	48,920.6	18.7

^{*}CAGR; compound annual growth rate. Adopted from BCC Research 2012

The structure of nano-tecnology market for 2010-2015

	0,	
Position	Market share, %	
Nano-materials	30-35	
Semi-conductors	18-25	
Data storage devices	15-20	
Bio-technologies	9-14	
Polymers	8-12	
Electro-chemistry	3-5	
Optics	2-4	

Adopted from Kovalev 2013

Total Products Listed

Adopted from Project on Emerging Technologies (WWICS)

Production/fabrication

Usage/application

Waste/disposal

ENVIRONMENT

Prediction of environmental health implications

Nano-enabled products: Europe and USA (CPI)

Product category

Hansen et al. 2016. Environ. Sci.: nano 3

Hoagland's Medium (HM)

Exposure water	HM50	HM100
Ca (mg/L)	74	157
Mg (mg/L)	20.25	42.5
CaCO ₃ (mg/L)	550.25	268.5
рН	6	6

River water - unfiltered

Parameter	Value (stdev.)	
рН	7.05-7.54 (0.15)	
DOC	3.2-3.77 (0.17) mg/L	
Ag	<0.005 mg/L	
Na ⁺	13 mg/L	
Ca^{2+}	10.67 (0.47) mg/L	
Mg^{2+}	7.93 (0.05) mg/L	
SO_4^{2-}	7.97 (0.17) mg/L	
Cl-	0.02 (0.005) mg/L	

in test- Hoagland's medium

powder ZnONPs in DI water

in test- Hoagland's medium

The influence of environmental parameters on behaviour and hazard

Size transformation-ionic strength influence

Zhang et al. 2011. Environ. Sci. Technol. 45

Suttiponparnit et al. 2011. Nanoscale Res Lett., 6:27

Exposure assessment – multi-parametric approach

Location specific risk assessment of nano-enabled products/processes

- Source identification
- Categorization and prioritization for the exposure of water resources
- Tiered exposure assessment of identified priority products/processes
- Integrate environmental data of the locality
- Link exposure and hazard
- Estimate risks: trade offs

Acknowledgements

National Research Foundation (South Africa)

Council for Scientific and Industrial Research

Sensor 100

