Performance Evaluation of South African Coals under Oxy-Fuel Combustion in a Fluidized Bed Reactor

H. I. Mathekga,^{†,‡} B. O. Oboirien,^{*,†} A. Engelbrecht,[†] B. C. North,[†] and K. Premlal[‡]

CSIR Materials Science and Manufacturing, PO Box, 395, Pretoria 0001, South Africa
Tshwane University of Technology, Department of Chemical, Metallurgical and Materials
Engineering, Pretoria 0183, South Africa

Abstract

In this study, the experimental results of the oxy-fluidized combustion of three different South African coals (sub-bituminous) are presented. The coal samples were denoted Coal A, B, and C. Three combustion atmospheres—air, oxy (21% O(sub2)/79% CO(sub2)), and oxy (30% O(sub2)/70% CO(sub2))-were studied. A total of 18 tests were conducted in a bubbling fluidized bed reactor at 850 and 925 °C. The results obtained showed that the highest carbon burnout was obtained at 30% O2/CO(sub2), followed by air, and last at 21% O2/CO(sub2). Coals A and B had a higher carbon burnout than Coal C. There was a marginal difference of 1% in the carbon burnout for both Coals A and B in all the conditions except at 21% O(sub2)/CO(sub2) at 925 °C, when the carbon burnout of Coal A was 5% higher than that of Coal B. Carbon burnout in Coal C was about 20% lower than those of Coals A and B. Carbon burnout had a good correlation with the char particle temperature at all the combustion conditions studied for the three coals. The carbon burnout only had a good correlation with the vitrinite random reflectance at 21% O(sub2)/CO(sub2) at 925 °C for the three coals. The highest char particle temperature (1250 K) was obtained in Coal B at 30% oxy-combustion (30% O(sub2)/CO(sub2)) at a 925 °C bed temperature, and it had the highest carbon burnout of 99.34%. The lowest char particle particle temperature (1167 K) was obtained in Coal C at 21% oxy-combustion (21% O(sub2)/CO(sub2)) at a 850 °C bed temperature, and it had the lowest carbon burnout of 65.81%. There was a higher fuelnitrogen conversion in air combustion than in oxy-fuel combustion than for all the coals. Fuel-S conversion ratios to SOx indicated that air combustion had relatively higher conversions than oxy-fuel, with the highest conversion of 35% observed for Coal A at 925 °C.