
Towards a Software Approach to Mitigate Correlation Power Analysis

Ibraheem Frieslaar1,2, Barry Irwin2

1Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa.
2Department of Computer Science, Rhodes University, Grahamstown, South Africa.

ifrieslaar@csir.co.za, b.irwin@ru.ac.za

Keywords: Software Countermeasure, AES, CPA, Threads, Task Scheduler, Resistance.

Abstract: In this research we present a novel implementation for a software countermeasure to mitigate Correlation
Power Analysis (CPA). This countermeasure combines pseudo controlled-random dummy code and a task
scheduler using multi threads to form dynamic power traces which hides the occurrence of critical operations
of the AES-128 algorithm. This work investigates the use of a task scheduler to generate noise at specific
areas in the AES-128 algorithm to mitigate the CPA attack. The dynamic power traces have shown to be
an effective contermeasure, as it obscures the CPA into predicting the incorrect secret key. Furthermore, the
countermeasure is tested on an ATmega and an ATxmega microcontroller. The basic side channel analysis
attack resistance has been increased and in both scenarios the countermeasure has reduced the correlation
accuracy and forced the CPA to predict the incorect key. The correlation accuracy has decreased from 97.6%
to 53.6% on the ATmega microntroller and from 82% to 51.4% on the ATxmega microcontroller.

1 INTRODUCTION

Since the introduction of side channel analysis (SCA)
(Kocher et al., 1999), SCA has grown to be a pow-
erful technique used to attack various embedded sys-
tems that employ cryptographic algorithms for secu-
rity such as the AES algorithm. These cryptographic
algorithms assist in protecting vital information of an
individual or a system. The AES algorithm has be-
come the main standard for encrypting data, therefore
the research community have focused much of their
attention on attacking the AES implementations on
embedded devices (Brier et al., 2004; Schramm et al.,
2004; Kocher et al., 2011; O’Flynn and Chen, 2015).

Kocher et al. have shown that there is a correla-
tion between the power usage of a cryptographic sys-
tem and its secret key-dependent intermediate vari-
ables. SCA uses this information to retrieve the se-
cret key that was used to encrypt the data. SCA con-
sists of three main types of attacks, simple power
analysis (SPA), differential power analysis (DPA),
and correlation power analysis (CPA). To mitigate
these SCA attacks, various software countermeasures
have been introduced such as boolean and arithmetic
masking (Blömer et al., 2004; Oswald and Schramm,
2005); hiding (Tillich et al., 2007); random precharg-
ing (Hoogvorst et al., 2011) and shuffling (Veyrat-
Charvillon et al., 2012).

This work aims to combine the knowledge of the
hiding technique within the time frequency domain
and combines it with mullti threads and a task sched-
uler to generate dynamic power traces on each exe-
cution of the AES-128 algorithm to create a software
solution for a hardware problem. The best possible lo-
cation to insert the pseudo controlled-random dummy
code into the algorithm and the amount of threads that
are required to be inserted to generate a noise pattern
that hides information and forms a mask for the power
traces are investigated.

1.1 Our Contribution

This research presents a novel implementation of a
software countermeasure to mitigate the CPA attack
on microcontrollers. The implementation consists of
combining pseudo controlled-random dummy code
that hides the occurrence of critical operations of the
algorithm. Additionally, time dilation is used in com-
bination with the task scheduler and multi threads to
generate dynamic power traces. To the best of our
knowledge we have not come across a software coun-
termeasure that makes use of a threaded approach.
The use of a task scheduler to generate noise at
specific areas in the AES-128 algorithm to mitigate
the CPA attack is investigated. The dynamic power
traces has shown to be an effective measure, as it ob-

scures the CPA into predicting the incorrect secret
key. The countermeasure is tested on an ATmega
and an ATxmega microcontroller, in both scenarios
the countermeasure has reduced the correlation accu-
racy significantly and has prevented the correct secret
key from being predicted on both microcontrollers.
Furthermore, the countermeasure have increased the
attack resistance from p = 1

(T+1)·16 to p = 1
(T+1)N ·17

with a minimal execution overhead.

1.2 Organization

The remainder of this paper is organized as follows:
Sections 2 discusses the research carried out in the
field of software countermeasures against SCA; Sec-
tion 3 elaborates on the equipment and techniques
used to capture and analyze the data; Section 4 details
the proposed countermeasure the system implements;
followed by Section 5 and Section 6 which presents
on the results and analysis of the results; and finally,
the paper is concluded in Section 7.

2 SOFTWARE
COUNTERMEASURES

This section discusses the most prominent exist-
ing techniques used as a software countermea-
sures against SCA. These techniques are random
precharging, masking, hiding and shuffling. Random
precharging in a software environment requires the
datapath to be filled with random operand instruc-
tions before and after an important value is executed
(Tillich and Großschädl, 2007).

The masking countermeasure generates a mask to
camouflage the intermediate values of the algorithm
with a random value not known to the attacker. There-
fore the intermediate values will become independent
from the power consumption of the device.

Hiding can possibly occur in two domains. These
are the amplitude and time domains. Hiding infor-
mation in the amplitude domain attempts to diminish
the power consumption of various executions of the
algorithm to reduce the overall power consumption
whereas, the time domain requires the use of random-
ization of a specific execution of the algorithm to oc-
cur at different positions in time for every execution
of the algorithm.

It is naturally easier to implement the hiding tech-
nique in the time domain as a software countermea-
sure. This type of hiding reduces the correlation be-
tween the power usage and its secret key-dependent
intermediate variables. To achieve the randomization

that leads to the specific execution of the algorithm
occurring at various time locations, two methods can
be used. These two methods are inserting dummy op-
erations and shuffling the operations of algorithm. It
is important that the dummy code not be recognized
from the normal code, as the attacker could ignore the
dummy code.

To achieve the most permutations both the shuf-
fling and insertion of dummy operations in the AES
algorithm are used (Tillich et al., 2007). The most ef-
fective place in the AES algorithm for this approach
is at the S-box round of encryption. The AES round
consists of 16 S-boxes (Daemen and Rijmen, 2002)
thus the probability for a specific value at a specific
point in time is p = 1

16 . Dummy operations (T) can
be inserted at the S-box round, this leads to T oper-
ations added to 16 true states. On each execution of
the algorithm the randomizer would integrate the true
states with the dummy operations randomly. There-
fore, the probability for a specific value at a specific
point in time becomes.

p =
1

(T +1) ·16
(1)

The protection against SCA attacks is determined by
the value of p. Therefore, the greater the probability
the more resistant the algorithm becomes against SCA
attacks.

3 EXPERIMENT SETUP

This section is separated into three subsections. Sub-
section 3.1 will discuss the equipment that was used to
carry out a CPA attack, Subsection 3.2 will elaborate
on the CPA attack algorithm, followed by Subsection
3.3 which discusses the experiments that were carried
out.

3.1 Equipment

This subsection describes the equipment and settings
used to carry out a successful CPA attack on the mi-
crocontrollers. In order to capture the data, we make
use of a complete platform called the ChipWhisperer
kit (O’Flynn and Chen, 2014). This kit serves as a
platform for SCA attacks as it consists of the main
elements required for an attack: a target device, mea-
suring equipment, capturing software, and attack soft-
ware. The hardware consists of a field-programmable
gate array (FPGA). The ZTEX FPGA Module uses a
Spartan 6 LX25 FPGA (ZTEX, 2016).

The hardware allows the attacker to use syn-
chronous sampling. This grants the ability to syn-
chronize the sample clock with the device clock.

It is demonstrated that sampling at 96 MS/s syn-
chronously achieves the same results as sampling at
2 GS/s asynchronously (O’Flynn and Chen, 2012).
Once the system clock and the device clock is syn-
chronized it is possible to multiple the digital signal.

The attack is carried out by using the provided
board known as the multi-target board. The multi-
target board is connected to the FPGA module. The
multi-target board consists of various areas that can
target different devices such as an AVR microproces-
sor or a smartcard. For this research the AVR section
of the multi-target board was used as the target area.

In this research the countermeasure has been
tested on two different types of microcontrollers
(MCU). The two MCUs that were used are the AT-
mega328p and the ATxmega128D4 MCUs. Addi-
tionally, two versions of the ChipWhisperer were
used as well. The ChipWhisperer Capture Rev2 was
used to capture data for the ATmega328p MCU and
the ChipWhisperer Lite was used to capture data for
ATxmega128D4 MCU. Both versions of the Chip-
Whisperer uses the same FPGA.

These MCUs are part of the 8-bit microproces-
sors from Atmel. They offers on-chip Flash, SRAM
and internal EEPROM memories. These types of
MCU have been used in various scientific research
and in industrial applications (Kunikowski et al.,
2015). Therefore, this research makes use of these
two MCUs.

The ChipWhisperer Lite is merely a smaller form
factor of the ChipWhisperer Capture Rev2. Figure 1
illustrates the ChipWhisperer Capture Rev2 setup. On
the left of the figure is the FPGA and the right side
is the multi-target board. The ATmega328p MCU is
placed into the multi-target board which is intern con-
nected to the FPGA. Figure 2 depicts the ChipWhis-

Figure 1: ChipWhisperer Capture Rev2. On the left is the
FPGA which is connected to the multi-target board.

perer Lite setup. On the left is the FPGA in a smaller
for factor which is connected to the attack device. The
attack device has the ATxmega128D4 embedded onto
the board.

Both ChipWhisperers were configured to use the
same variables when an attack was carried out. These
variables are as follows: the gain was set to a low
setting and the signal amplitude was increased by 45,

Figure 2: The ChipWhisperer Lite setup. On the left is the
FPGA in a smaller for factor which is connected to the at-
tack device.

resulting in a 34.5039 decibel (dB) increase; the trig-
ger was set to use the rising edge, thus the power
traces would be captured at a rising edge logic level;
and finally, the base clock frequency of 7.375 MHz
was multiplied by 4 to give a frequency of 29.5 MHz.
These set variables assisted in increasing the power
output and remained constant for all experiments.

3.2 Attack Procedure

This subsection explains the type of SCA attack that
will be used in this research. In this research the CPA
attack would be used (Brier et al., 2004). It is known
that the CPA out performs the standard DPA attack.
The CPA is much faster in processing data since it
only requires a few power traces whereas the DPA is
slower and needs thousands of power traces. Further-
more, CPA is more accurate at predicting the correct
subkeys as it looks at the correlation between all the
key guesses (Brier et al., 2004).

Firstly, the mathematical approach of the CPA
would be explained followed by an implementation
of using it to retrieve the secret keys from the AES
algorithm.

It is assumed that the attacker has captured a
power trace td, j with d = 1,2,3 . . .D being the total
amount of traces, and t = 1,2,3 . . .T is the time index
per power trace. Therefore, the attack system takes D
measurements with each measurement being T points
long. If the attacker has the knowledge of the exact
point the encryption process occurs, then only a sin-
gle point would be measured such that T = 1 for each
d trace. The plaintext that corresponds to the power
trace is also known by the attacker and is defined as
Pd .

It is assumed that the microcontroller’s power con-
sumption is dependent on the intermediate value’s
hamming weight. hd,i = l((Pd , i)) is defined, where
a given intermediate value’s leakage model is l(x),
and w(p, i) produces and intermediate value based
on the given input plaintext with a guess number
i = 1,2,3 . . . I.

In terms of AES, the intermediate value would
be selected as follows: each byte of the plaintext

is XOR’d with each subkey byte of the secret key.
Therefore we have:

l(x) = HammingWeight(x)

w(p, i) = p⊕ i (2)
This implies that a single byte of the plaintext p

is being attacked at a time. Therefore the AES key is
being attacked a single byte at a time. It is known that
AES-128 algorithm consists of 16 subkeys (Daemen
and Rijmen, 2002) thus, there is only 16× 28 possi-
bilities, instead of 2128 possibilities.

The next procedure is to establish a linear rela-
tionship between the captured power traces td, j and
the predicted power consumption model l(x) using
the correlation coefficient. The aim is to ensure that
there is a non-linear relationship between w(p, i) and
either p or i. For this case it is possible to attack the
the AES-128 algorithm at the point of the non-linear
substitution boxes (S-Boxes). The final step is to cal-
culate the correlation coefficient for each of the pos-
sible subkey values I over all traces D for each points
of j, the equation is as follows:

ri, j =
∑

D
d=1[(hd,i − h̄i)(td, j − t̄ j)]√

∑
D
d=1(hd,i − h̄i)2 ∑

D
d=1(td, j − t̄ j)2

(3)

Where h is the hypothetical values produced by
the power consumption model.

Based on the mathematical explanation of the
CPA in order to obtain the secret key of the AES-
128 algorithm, four steps needs to be accomplished.
These four steps are as follows:

1. Capturing the power trace, along with the input
text when the encryption process is executed.

2. Implement a power leakage model, where the
known input text is used with a guess of the key
byte.

3. Implement the correlation equation that loops
through all the captured power traces.

4. Create a ranking procedure that determines the
most likely key based on the correlation equation.

Figure 3 illustrates a snippet of the AES algorithm at
the first round of the algorithm. It is depicted that
each input byte of text is XOR’d with the secret key
which passes through an S-Box (a lookup table). The
output of the S-Box is the target area where the attack
will take place, this can be seen by the red arrow in
the figure.

Once the data is acquired, the next step is to per-
form a guess and create a power leakage model. A
single subkey is attacked at a time, thus the attack sys-
tem loops through a single subkey and guesses every
possibility for that subkey. The guessed values range

Figure 3: A snippet of the AES algorithm with an arrow
poitning at the point of attack.

from 0 – 255. Upon acquiring the guess, the inter-
mediate value corresponding to the guess needs to be
calculated. Therefore, a single byte of input, a single
byte of the guessed key, is used to return the output of
the S-Box. For each guess the number is converted to
binary and the total number of 1’s of that binary out-
put is accumulated to determine the weight, known
as the hamming weight power model (Mestiri et al.,
2013).

The correlation is calculated by substituting all the
acquired data into Equation 3 with each variable be-
ing explained earlier in this subsection. It is possible
to obtain a negative correlation. However, the sign is
of no interest, only the value is required, thus the ab-
solute value of the correlation is used. Furthermore,
only the maximum correlation across all points in the
trace are stored. In order to achieve a ranking system
the maximum correlation is used to find which hy-
pothetical key caused that maximum correlation, this
intern is the subkey of the secret key.

3.3 Experiments

The experimental setup can be broken down into two
phases the capture data and analyze data phases as
seen in Figure 4. In order to capture the data, the

Figure 4: The flow diagram of the experimental setup.

Atmel ATmega328p and ATxmega128D4 MCUs was
programmed to execute the AES-128 cryptographic
algorithm. The ATmega328p was placed into the
multi-target board, the target board was connected

to the FPGA which was connected to a computer.
Python is used to send commands from the com-
puter to the FPGA, issuing the commands to MCU
to execute the AES-128 algorithm. While the al-
gorithm is being executed the power traces along
with its corresponding input text are captured. The
ATxmega128D4 is an embedded MCU and it is em-
bedded onto a pcb, known as the device under test as
seen Figure 5. The device under test is connected to
the FPGA of the ChipWhisperer Lite and the same
procedure to capture data from the ATmega328p is
used. Once the data has been acquired it is sent to a

Figure 5: The device under test with the embedded MCU of
the Atmel ATxmega128D4.

Python program where it determines the secret key.
This program consists of the leakage model and CPA
attack discussed in the previous subsection to guess
the correct secret key.

The first experiment is to create a baseline for
future experiments. The baseline is determined by
implementing the AES-128 on both MCUs with no
countermeasures in place and using the CPA tech-
nique to retrieve the secret key. While the MCUs are
executing the AES-128 algorithm, the power traces
and its corresponding input text would be collected.
The data collection will be repeated 50 times, on each
occasion the same secret key and different random in-
put text would be used. Therefore, each set would
consist of 50 power traces with the same secret key
and different input text. Upon acquiring the data,
the CPA attack would be performed on these power
traces.

In order to determine the best location to insert
the noise threads two pre-experiments were carried.
Experiment A inserted the noise threads at the odd
subkeys and Experiment B inserted the noise threads
at all the subkeys.

The second and third experiments would con-
sist of implementing the countermeasure on the AT-
mega328p and ATxmega128D4, respectively. The
same procedure would be used as discussed previ-
ously. Additionally, each experiment consists of an
additional 25 test cases. These 25 test cases used dif-
ferent secret keys. The secret keys were generated by
RANDOM.ORG which uses atmospheric noise as a
True Random Number Generator (TRNG) to gener-
ate their data (RANDOM.ORG, 2016).

The robustness and scalability of the countermea-

sure will be tested in experiment four and five, where
the number of trace would be increased from 50 to
200. On each increment of 50 power traces, the data
would be used as input for the attack procedure for
both MCUs. To test the added overhead introduced
by the countermeasure in experiment four and five,
the time it takes to execute one run of the algorithm
will be recorded for all test scenarios.

4 PROPOSED
COUNTERMEASURE

This section discusses the proposed countermeasure
that the system will implement. The countermeasure
aims to improve on the basic hiding and shuffling
techniques and introduces a new approach of using
a multi threads and a task scheduler.

The countermeasure makes use of the li-
brary implemented by Dean Ferreyra, known as
the AVR Threads Library.(Ferreyra, 2008) The
AVR Threads Library provides basic preemptive
multitasking/multi-threading to the Atmel AVR fam-
ily of microcontrollers. The library was implemented
in assembly and in C language. A simple round-
robin style task switcher is implemented. Origi-
nally, the library was designed for the ATmega128
and AT90S8515 MCUs, the library has been modi-
fied and recompiled to work with ATmega328p and
ATxmega128D4 MCUs.

The basic idea is to have the AES-128 algorithm
executing on one thread, while multiple other threads
would be executing at the same time. These multi-
ple threads would consist of dummy code, and will be
known as noise threads. These noise threads would
be executed at the S-boxes. Furthermore, on each ex-
ecution of the code, the noise threads would vary.

A random number (x) would be generated be-
tween 0 – 15 this would server as the amount of
threads to use. The next step in the procedure is to
use that number and generate noise threads at ran-
dom subkeys y[x]. To calculate at which location of
the subkey the noise would appear each y[] value was
randomized between 0 – 15, a check is performed to
make sure that none of the y[] values are the same.
Thus, the noise would be placed at different locations
of the subkeys and generate dynamic power traces.
Therefore, on each execution of the algorithm the
power traces would differ. This approach gives us a
resistance of:

p =
1

(T +1) ·16
(4)

Where T is the number of threads. The resis-
tance to SCA attacks is the same to that of Equation 1.

The resistance is further increased by having different
types of noise threads. Each noise thread can execute
a different set of dummy code. These dummy sets of
code are various mathematical instructions. It is noted
that in this research it was discovered that using these
mathematical instructions on its own would generate
minimal power consumption. However, when these
instructions were placed inside the printf method, a
better power wave was generated.

Below is a code snippet that illustrates at line 7 –
9, the Noise method making a call to the arithmetic
method which is located at line 1 – 5. In order to en-
capsulate the Noise method into the thread framework
it is called at line 11.
Begin
1 int ArthmPlus(int A, int B){
2 int x;
3 x = A+B;
4 return x;
5 }
6 void Noise(void){
7 printf("%d\n",ArthmPlus(10,20));
8 }
9 avr_thread_start(&fn_context,Noise,

fn_stack, sizeof(fn_stack));
End.

The resistance is increased by having each noise
thread perform a different instruction. The type of
noise generated by the noise thread is randomly se-
lected. Therefore the new resistance becomes:

p =
1

(T +1)N ·16
(5)

Where N is the number of different types of noise
that are produced. It is noted that at the execution
location of a subkey, there can be more than one noise
thread. In this research only one noise thread would
be generated at a subkey, since the ChipWhisperer has
a hardware limitation of only be able to capture 24000
points. Therefore, this technique already shows it has
the capabilities of deterring attackers that use low cost
equipment to attack microcontrollers.

On the initial startup a value was stored into the
EEPROM of the MCUs. This value is used to ensure
that the algorithm is generating a different sequence
of random values on each execution. Before the S-
box procedure is called, the value is pulled from the
EEPROM and used by the srand() method to change
the random sequence. After the S-box procedure has
been completed this value is incremented and stored
back into the EEPROM to be used for the next pro-
gram execution. Furthermore, to create more confu-
sion and increase the resistance, this value is XOR’D
and gets passed through the same S-box the AES al-
gorithm uses. Therefore, the resistance now becomes:

p =
1

(T +1)N ·17
(6)

5 RESULTS

This section examines the results of the experiments
explained in Subsection 3.3. The first step is to ana-
lyze the findings from experiment one. Table 1 shows
the results for the CPA attack against both microcon-
trollers, when no countermeasures are in place. These
results will serve as the baseline that the other exper-
iments were compared to. The table shows the corre-
lation accuracy the attack predicts for each subkey of
the AES-128 algorithm, followed by a total average
accuracy for all the subkeys.

The table indicates that using 50 traces as input
the CPA attack is able to achieve an average accu-
racy of 97.66% when the ATmega328p MCU is un-
der test and an average accuracy of 82% when the
ATxmega128D4 is under test. In both experiments,
the secret key was successfully retrieved. Table 2 il-
lustrates the results of experiments A and B. It can be
seen that there has been a slight reduction in accuracy
when compared to the base results. However, the CPA
attack still predicts the correct secret key. This is due
to the fact that the CPA can handle power traces with
the same type of noise even at different locations.

Tables 3 – 6 consists of four columns, with one
column being the secret hexadecimal key that was
used in the system, followed by the next column
which consists of the hexadecimal key, the CPA at-
tack has predicted to be the secret key. The hexadec-
imal key in the AES-128 algorithm is made up of 16
hexadecimal subkeys. The last column is the average
correlation accuracy over all subkeys. As explained in
Subsection 3.2 the correlation accuracy is determined
by the ranking system. The ranking system would list
all possible subkeys with their corresponding corre-
lation values. The correlation values of the real sub-
keys have been summed up and averaged, to give the
average correlation accuracy. The average correlation
accuracy informs the system of how close it was to
predicting the actual secret key. Furthermore, the first
column in Tables 3 – 4 depict the test cases per exper-
iment and the first column in Tables 5 – 6 illustrates
the number of power traces that were used as input.

The next discussion will elaborate on the findings
of experiment two and three, when the software coun-
termeasure was loaded onto both microcontrollers. It
is observed in Table 3 that across all 25 tests, the
CPA predicts all 25 secret keys incorrectly and thus
the countermeasure is working. It has only predicted
two subkeys out of 400 subkeys correctly as seen by
the highlighted values in the table at test case 2 and
22. In order to calculate the correct subkey prediction
rate, the number of correct subkeys is dived by the to-
tal number of subkeys and multiplied by a 100. The

Table 1: The results for the CPA attack against both microcontrollers, when no countermeasure is in place. All subkey values
are in percentage(%)

Subkey

MCU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

ATmega328p 98,0 98,8 98,7 98,1 96,8 98,3 94,4 98,6 95,9 98,5 98,5 98,8 97,5 98,2 97,2 96,2 97,6

ATxmega128D4 71,7 86,4 88,7 85 84,7 84,8 75,8 91,0 82,7 71,3 80,2 85,3 75,4 79,4 81,8 87,1 82,0

Table 2: The results for the CPA attack for Experiments A and B. All subkey values are in precent(%)

Subkey

Experiment 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Experiment A 91,5 88,4 95,2 90,2 93,0 88,0 91,7 82,0 92,7 74,4 91,4 95,7 95,2 89,0 93,8 90,2 90,1

Experiment B 90,4 98,6 97,5 92,9 91,4 98,4 93,3 97,8 91,5 97,7 89,9 81,4 92,6 98,0 91,0 92,0 93,4

Table 3: Result of the CPA attack with the countermeasure in place on the ATmega328p, across 25 tests.
Test Secret Key CPA Predicted Key Subkey Accuracy(%)

1 C596FBED239B3A466B69281E87AE0C98 5DD2585D1740711CB80F370CB8FB4D08 52.2
2 63C9DCD3F2DD5F36304A12D472355970 13EA1D385B90B73AABEE6DEC7A91597B 53.4
3 C70C756601726650CD55F2B28B65D58D 5148AEB9FAEDB59BF127F1084B53BDBB 54.6
4 ED7E3BC95E14F9F87571EC1E746C1270 89E3A0B0758AE55A71A389A2B4EF3425 54.9
5 4C97F7576279FAE5F3534D1D32476800 7707AC6D6074FCC38B6B6D6E4F87DF4F 54.0
6 824632386855B6886D249817A8BAE764 B7FDFEB21AE83B8F12B9FCBDC3F4F552 53.8
7 4B590C6332765BA05E7EFC0328E69581 BA4C48CD91D893A27CB33B7C169628D7 52.8
8 49F9B0045496C5F590E21C965A9CEBF3 DA269C7BE318C9186E3EAD25E0325E04 52.9
9 6AF3E7BF6F2F78CC039EA0F08F258AF0 3B50D7705C5E06170C57E048DE39476A 53.5

10 39D026F3202BF6AF912B053E697ED913 50F6B926D2F2EA30EA516CD4448803FF 53.3
11 40AAF513BD090995732279F85EA3D529 C2AF47E9819866EFAA80C38C5DFE6F23 52.1
12 E118075E35DEE4CB1DB907CD5A0CDA1B 7E7624AB38ACE1C8BBD704F9F3D6C3AF 54.3
13 87C6C3CC97E62942CFE10E6B84FD370C 318681DC587D70865E0D42C7050CBF8A 53.4
14 89D987851609CCE409D11DC55116EC4B 3D2B88425F56901CFF5847A96EF944EA 54.4
15 DD4CE52CB59FCDE78F1F1277B2DC45BF EA3854CFD30B85F75142B8A92CDBA6F7 54.7
16 7F48EFE75573B4CCE031DD8186331D08 584D9471CCAA9D382486DF9D100206B4 52.3
17 8BCBFF67801A2959CAEB20C2DD0C365C 5E987A913D0B93F3E6EDB076894F0B3F 53.3
18 6631A8C000B14609DC5AE8FD09D855A5 D6762C55B0A0CFF6FA3BD253914A67FE 54.0
19 330DA43DFE047DC433DC22716249D63A 185AA7CD2BE91BF3F81E5C022B062A13 52.5
20 2A07D90B5481EABD84829435220462A0 66E223559ED3A8A4CD0AD863602D2C1E 53.7
21 2FD286BF816451A42DA299212FEF9FE0 58DD427CC5489F849AFD3ECB3F0FEA1E 53.6
22 D2CCC40220518FF0A8E7A28AF5EF2204 E0940B507F8344CDDCB4A389C32E6004 55.4
23 63B4191B0CFD4D457EB902196F963A12 E59F08E1DA950FA761BE7F51755B21B6 53.3
24 7797E7E5D29BE8C04CEAB70A80F0E329 5E125DD5AB2364ED0F8CC29740014C3D 54.7
25 2B7E151628AED2A6ABF7158809CF4F3C 0E1E3F30EE62131768BEAA2E3F5726A2 53.8

53.6 AVG

Table 4: Result of the CPA attack with the countermeasure in place on the ATxmega128D4, across 25 tests.
Test Secret Key CPA Predicted Key Subkey Accuracy(%)

1 C596FBED239B3A466B69281E87AE0C98 D9A9458F12B761C854B7C3169187EAD9 49.7
2 63C9DCD3F2DD5F36304A12D472355970 9D249DC39271ED54C42AEB1EC42D4EF7 54.6
3 C70C756601726650CD55F2B28B65D58D FA9CF3B2C915BB25F2D09A46A9828D87 49.5
4 ED7E3BC95E14F9F87571EC1E746C1270 12DFF54364E444A4F2B6B6383EE3DE28 49.3
5 4C97F7576279FAE5F3534D1D32476800 37F9176311D493458FD8D443BD77BF86 51.0
6 824632386855B6886D249817A8BAE764 02846A67ED3BA7479A1CC9FEBF945627 54.0
7 4B590C6332765BA05E7EFC0328E69581 230FA76630265383AEE12E53815773EB 51.7
8 49F9B0045496C5F590E21C965A9CEBF3 ACBB36D3BA685608C0ED74AD2843494F 49.3
9 6AF3E7BF6F2F78CC039EA0F08F258AF0 0453971F8243F776AE50E20C74E13CEB 49.9

10 39D026F3202BF6AF912B053E697ED913 0B1D233D210D5F43D77102BED1AA6DCB 50.6
11 40AAF513BD090995732279F85EA3D529 0E7DFE8300F116CDBC4D89416F05E9B7 52.0
12 E118075E35DEE4CB1DB907CD5A0CDA1B F8B2B9C5FA8FE8A545850D4EAA86D876 50.4
13 87C6C3CC97E62942CFE10E6B84FD370C 3874CC56E57FD8D0064D1DBD50159BCA 52.5
14 89D987851609CCE409D11DC55116EC4B BE2DF22445924CB1560DD6F1A969CB13 50.1
15 DD4CE52CB59FCDE78F1F1277B2DC45BF 6C81B181058E39AA2FB58F546D1F8674 52.6
16 7F48EFE75573B4CCE031DD8186331D08 7FD851CF6DB5BCBF04565F98FBA71F54 51.7
17 8BCBFF67801A2959CAEB20C2DD0C365C ACBC299292B901DF973EA26041A1A42D 52.5
18 6631A8C000B14609DC5AE8FD09D855A5 29372C10EECF8250C759342263225282 53.4
19 330DA43DFE047DC433DC22716249D63A 27634F665490E3584E34FEB65516039C 52.2
20 2A07D90B5481EABD84829435220462A0 7D904A8723A3B1816C2D1C8EC762CA28 52.2
21 2FD286BF816451A42DA299212FEF9FE0 13AF97A6B0F449D0FDD57961666CF5D7 51.2
22 D2CCC40220518FF0A8E7A28AF5EF2204 F4995DE04481DFFB8136C8981DF31C32 51.9
23 63B4191B0CFD4D457EB902196F963A12 2D954817348FC5D96575B302977D4C64 50.3
24 7797E7E5D29BE8C04CEAB70A80F0E329 3C2E9C5B75D8BAEEB64AF55B9FC663AE 50.6
25 2B7E151628AED2A6ABF7158809CF4F3C 17F26BFA1DDF836EB9A7041E286F26BF 53.1

51.4 AVG

Table 5: Result of the CPA attack using various trace samples on the ATmega328p.
Traces Secret Key CPA Predicted Key Subkey Accuracy(%)

50 2B7E151628AED2A6ABF7158809CF4F3C 0E1E3F30EE62131768BEAA2E3F5726A2 53.8
100 2B7E151628AED2A6ABF7158809CF4F3C A47A2F41B050FCED07DAAEF78868AE17 38.9
150 2B7E151628AED2A6ABF7158809CF4F3C 735F681545D899FE30DD44B72958A91E 31.8
200 2B7E151628AED2A6ABF7158809CF4F3C 735F8A823CAFE92DC4356FC27E788F2A 27.7

Table 6: Result of the CPA attack using various trace samples on the ATxmega128D4.
Traces Secret Key CPA Predicted Key Subkey Accuracy(%)

50 2B7E151628AED2A6ABF7158809CF4F3C 17F26BFA1DDF836EB9A7041E286F26BF 53.1
100 2B7E151628AED2A6ABF7158809CF4F3C 23B0DEDFB16F8927CB6FB7412A188A81 37.4
150 2B7E151628AED2A6ABF7158809CF4F3C 83299AA2B1425C909B0710804AD2796B 30.9
200 2B7E151628AED2A6ABF7158809CF4F3C 63EBE0FDD00BD102BC1463792B1A8843 26.3

correct subkey prediction rate on the ATmega328p
MCU was 0.5%. Therefore, 0.5% of the time the
CPA would predict a correct subkey. Furthermore,
the average correlation accuracy for all the subkeys
is only 53.6%. Therefore the base correlation accu-
racy of 97.66% using the ATmega328 MCU has seen
a reduction of 43.96% in correlation accuracy.

The results in Table 4 indicates that the CPA at-
tack correlation have dropped from 82% to an av-
erage of 51.4% in correlation accuracy. The coun-
termeasure prevented all 25 secret keys from being
correctly predicted on the ATxmega128D4. Further-
more, only 1 subkey out of 400 subkeys were pre-
dicted correctly as seen by the highlighted values in
the table at test case 16. The correct subkey prediction
rate for this experiment followed the same calculation
as mentioned in the previous experiment. The system
had a correct subkey prediction rate of 0.25% on the
ATxmega128D4 MCU.

The next evaluation of the system is testing the
scalability of the countermeasure as explained earlier
in Subsection 3.3.

Table 5 and 6 illustrates the results for experi-
ments four and five, respectively. Observing Table
5, the first noticeable finding is that the CPA attack
predicted the incorrect secret keys for all four incre-
ments. As the number of sample traces increased the
correlation accuracy has decreased. By adding an ad-
ditional 150 traces, the correlation accuracy has de-
creased to 26.8% from 53.1% when using 50 traces.

From Table 6, it can be seen that in all four cases,
the secret key was not retrieved. A similar result is
obtained in experiment four when the number of in-
put traces are increased, the correlation accuracy de-
creases. The correlation accuracy has decreased from
53.1% to 26.3% when 150 more samples are used.

The final experiment was to determine, the extent
of extra overhead the countermeasure had on the al-
gorithm. Table 7, depicts the average time it took to
execute one instance of the AES-128 algorithm on the
ATmega328p and ATxmega128D4 MCUs with and
without the countermeasure. It is observed that the

Table 7: Time taken to execute the code with and without
the countermeasure

MCU Time (s)
ATmega328p 0.102
ATmega328p + Countermeasure 0.170
ATxmega128D4 0.115
ATxmega128D4 + Countermeasure 0.198

difference in time on the ATmega328p MCU with
and without the countermeasure is only 0,068 mil-
liseconds and the difference on the ATxmega128D4
MCU is 0,084 milliseconds. Thus, by adding the
countermeasure code with the existing AES-128 algo-

rithm the execution time difference has a minimal in-
crease on both the ATmega328p and ATxmega128D4
MCUs.

6 ANALYSIS

As we know the CPA attack could only require less
than a 100 power traces to carry out a successful at-
tack. This is evident in experiment one and two where
only 50 power traces were needed to predict the cor-
rect secret key on two different microcontrollers. This
is due to the strength of the CPA attack. Before
the proposed countermeasure was implemented it was
seen from the results in experiment A and B that in-
serting the same type of noise at every subkey or at
every odd subkey in the substitution round, the CPA
attack still predicted the correct secret key. This is
due to the fact that the power traces had little change
in each execution of the algorithm and each subkey
was attacked.

Once the proposed countermeasure was in place,
the CPA attack started loosing correlation accuracy
tremendously. The power leakage model of the CPA
relies on the power traces to have small changes when
each subkey is attacked and since our countermeasure
produces dynamic power traces where the power trace
is different on each occasion, causing confusion to the
CPA attack model. Therefore, having more permuta-
tions of the dynamic power trace would lead to the
CPA producing an even lower accuracy. This is fur-
ther evident by the fact that when more power traces
were added to the input, the correlation accuracy de-
creased and the attack predicted the incorrect secret
keys.

These dynamic power traces should be very effec-
tive against attackers that make use of low cost equip-
ment, such as the ChipWhisperer, since it is possible
to program the algorithm to use more noise threads at
each subkey location. This will force the CHipWhis-
perer to only capture half or less of the actual runtime
of the encryption process. This prevents the attackers
from gaining useful data to carry out an attack.

7 CONCLUSION

In this work we present a novel software countermea-
sure to mitigate CPA. The implementation consists of
combining pseudo controlled-random dummy code to
hide the occurrence of critical operations of the AES-
128 algorithm. Additionally, time dilation is used in
combination with multi threads and a task scheduler

to generate dynamic power traces. We have inves-
tigated the use of a task scheduler to generate noise
at specific areas in the AES-128 algorithm to miti-
gate the CPA attack. The dynamic power traces have
shown to be an effective countermeasure, as it ob-
scures the CPA into predicting the incorrect secret
key. Furthermore, the countermeasure was shown
to work on an ATmega and an ATxmega microcon-
troller.

In both scenarios the countermeasure reduced the
correlation accuracy significantly and prevented the
correct secret key from being predicted. The research
has also displayed that the extra overhead introduced
by the countermeasure is minimal in execution time
and that the basic SCA resistance has increased when
using this countermeasure. Therefore, we have intro-
duced a novel low overheard software solution that
uses multi threads and a task scheduler for a hardware
security problem.

8 FUTURE WORK

Although, the countermeasure has demonstrated that
it is able to mitigate the CPA attack, the issue of
performing instructions sequentially still remains on
these microcontrollers. It is intended to improve on
this work by implementing the countermeasure on an
embedded device that supports true multi threading
functionality where it would be able to execute the
noise and the AES threads in parallel. Additionally, it
is aimed to create a system where the algorithm learns
to manipulate the data such that it never produces the
same power trace twice.

ACKNOWLEDGEMENTS

The authors would like to thank the department of
Modelling and Digital Science at CSIR for providing
funding and support.

REFERENCES

Blömer, J., Guajardo, J., and Krummel, V. (2004). Provably
secure masking of aes. In Selected Areas in Cryptog-
raphy, pages 69–83. Springer.

Brier, E., Clavier, C., and Olivier, F. (2004). Correla-
tion power analysis with a leakage model. In Cryp-
tographic Hardware and Embedded Systems-CHES
2004, pages 16–29. Springer.

Daemen, J. and Rijmen, V. (2002). The design of rijndael:
Aes. The Advanced Encryption Standard.

Ferreyra, D. (2008). Avr development. http://www.
bourbonstreetsoftware.com/AVRDevelopment.
html.

Hoogvorst, P., Duc, G., and Danger, J.-L. (2011). Software
implementation of dual-rail representation. COSADE,
February, pages 24–25.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power
analysis. In Advances in CryptologyCRYPTO99,
pages 388–397. Springer.

Kocher, P., Jaffe, J., Jun, B., and Rohatgi, P. (2011). In-
troduction to differential power analysis. Journal of
Cryptographic Engineering, 1(1):5–27.

Kunikowski, W., Czerwiński, E., Olejnik, P., and Awre-
jcewicz, J. (2015). An overview of atmega avr mi-
crocontrollers used in scientific research and industrial
applications. Pomiary, Automatyka, Robotyka, 19.

Mestiri, H., Benhadjyoussef, N., Machhout, M., and Tourki,
R. (2013). A comparative study of power consumption
models for cpa attack. International Journal of Com-
puter Network and Information Security, 5(3):25.

O’Flynn, C. and Chen, Z. (2012). A case study of side-
channel analysis using decoupling capacitor power
measurement with the openadc. In Foundations and
Practice of Security, pages 341–356. Springer.

O’Flynn, C. and Chen, Z. D. (2014). Chipwhisperer: An
open-source platform for hardware embedded security
research. In Constructive Side-Channel Analysis and
Secure Design, pages 243–260. Springer.

O’Flynn, C. and Chen, Z. D. (2015). Side channel power
analysis of an aes-256 bootloader. In Electrical and
Computer Engineering (CCECE), 2015 IEEE 28th
Canadian Conference on, pages 750–755. IEEE.

Oswald, E. and Schramm, K. (2005). An efficient masking
scheme for aes software implementations. In Informa-
tion Security Applications, pages 292–305. Springer.

RANDOM.ORG (2016). Introduction to randomness
and random numbers. https://www.random.org/
randomness/.

Schramm, K., Leander, G., Felke, P., and Paar, C. (2004).
A collision-attack on aes. In Cryptographic Hardware
and Embedded Systems-CHES 2004, pages 163–175.
Springer.

Tillich, S. and Großschädl, J. (2007). Power analysis re-
sistant AES implementation with instruction set exten-
sions. Springer.

Tillich, S., Herbst, C., and Mangard, S. (2007). Protect-
ing aes software implementations on 32-bit processors
against power analysis. In Applied Cryptography and
Network Security, pages 141–157. Springer.

Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., and
Standaert, F.-X. (2012). Shuffling against side-
channel attacks: A comprehensive study with cau-
tionary note. In Advances in Cryptology–ASIACRYPT
2012, pages 740–757. Springer.

ZTEX (2016). Spartan 6 lx9 to lx25 fpga board.
http://www.ztex.de/usb-fpga-1/usb-fpga-1.
11.e.html.

