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Scintillated optical beams

When an optical beam propagates through a turbulent
atmosphere, the index variations cause random phase
modulations that lead to distortions of the optical beam.
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Weak scintillation

If the scintillation is weak the resulting phase function of the
optical beam is still continuous.
Such a weakly scintillated
beam can be corrected by an
adaptive optical system.
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Adaptive optics

An adaptive optical system measures the continuous phase
distortions in an optical beam and uses a deformable mirror
to correct the distortions.
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Deformable mirror

A deformable mirror can correct phase distortions by
changing the shape of the surface of a deformable mirror.
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Shack-Hartmann wavefront sensor

A wavefront sensor is used to detect the phase distortions
that are present in the beam. The Shack-Hartmann
wavefront sensor consists of a lenslet array and a CCD
array. It measures the gradient of the phase function.
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Phase gradient measurement

The local gradient in the phase function is determined by
the offset of the focal point caused by the tilt in the
wavefront.
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Least-squares algorithm

. Measured phase gradients → compute required
adjustments → deformable mirror

. Least-squares estimate of phase from measured phase
gradients

. Computation: linear (vector-matrix multiplication)
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Strong scintillation

When the scintillation becomes strong enough, the phase
distortions become severe enough to form optical vortices.
Then conventional adaptive optics does not work anymore.
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Detecting optical vortices

Adaptive optics cannot directly remove optical vortices
because they are phase singularities that cannot be
cancelled off by a deformable mirror. It is necessary to
remove the vortices first. In order to remove them one first
need to locate them.

One can use the output from a Shack-Hartmann sensor to
detect optical vortices.
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Curl of the gradient

It can be shown that for single vortex

∇×∇φ = 2πδ(x, y)
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Vortex density

∮

C

∇θ · d̂s =

∫∫

A

∇×∇θ · d̂a = ν 2π

(∇×∇θ) · ẑ da = dν 2π

Topological charge density:

D(x, y) =
dν

da
=

1

2π
[∇×∇θ(x, y)] · ẑ
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Detecting a vortex with SH

. Shack-Hartmann wavefront sensor: measures local
phase gradient F from shifts in focal points behind
lenslet array.
⇒ Locate optical vortices with curl: D = ∇× F

. Theoretical value is 2π. Actual value smaller than 2π
due to finite aperture size.

. Use threshold to select vortex out of noise.
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Circulation

Discrete output from Shack-Hartmann wavefront sensor →
compute circulation (discrete version of topological charge
density)

D =
1

2
[(by − ay) + (dy − cy) − (ax − cx) − (bx − dx)]
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Effect of shift

Peak value: π + 2 ln(2) = 4.53
If vortex is not located
in the centre among four
apertures, the circulation
values is smaller.
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Effect of morphology

For vortices with
different morphologies
the circulation values
fluctuates, but differs
significantly for two
topological charges.
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Forces annihilation

To get rid of optical vortices in strongly scintillated optical
beams, the idea is to force
a vortex dipole to
annihilate sooner by
introducing a special
phase function.
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Annihilation in Gaussian beam

Using our knowledge of vortex propagation in Gaussian
beams, we use phase function at the annihilation point.
The idea is that this phase
function still contains the
power to force a vortex
dipole to annihilate.

CSIR National Laser Centre – p.19/29



Vortex removal procedure

The procedure to remove optical vortices is then as follows:

. Located all the optical vortices.

. Divide them into dipoles.

. Compute annihilation phase function for each dipole.

. Multiply beam with all these phase functions.

. Allow beam to propagate.
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Random vortex fields

A random wave field (speckle field) is also a random vortex
fields.

Amplitude Phase

CSIR National Laser Centre – p.21/29



Random wave field

One can generate a random wave field by summing a
number of plane wave with random complex amplitudes

f(x, y, z) =
∑

n

αn exp (ikn · x)

where kn are propagation vectors all lying within a certain
cone angle θ, which determines the coherence area of the
field:

Radius of coherence area =
wavelength

sin θ
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Properties of random vortex fields

Random vortex fields have the folowing properties:

. Vortex density inversely proportional to coherence area.

. Globally tend to neutral topological charge.

. Adjacent topological charge is anti-correlated.

. During propagation: annihilation rate = creation rate
⇒ equilibrium
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Geometrical transforms

Rotation transform

⇒ artificial vortex field
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Polar formatting transform

Correcting distortion of SAR data.

⇒ another artificial vortex field
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Artificial vortex fields

. Artificial vortex fields can be generated by CGH
(geometrical transforms) or SLM.

. Separate vortices with opposite topological charge into
different regions.

. What happens during propagation?
Equilibrium will be restored.
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Density limitations

The maximum topological charge n in an area with
circumference L:

n

L
<

1

λ

. Each vortex adds a phase cycle to circumference

. Area quadratic in radius, circumference linear in radius.

. Area increases ⇒ spatial frequency on edge increases.

. If spatial frequency > wavenumber ⇒ only evanescent
waves ⇒ light depleted from exterior region.
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Scale dependence of vortex fields

Number of vortices as a function of the propagation
distance. The number increase up to some restoration
scale.
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Conclusions

. Shack-Hartmann wavefront sensor can be used to
detect optical vortices.

. Forced annihilation of vortex dipole is achieved with the
aid of a special phase function.

. Random wave fields contain random vortex distributions
that are globally neutral.

. Artificial vortex fields containing vortices with the same
topological charges in specific areas, are restored to
equilibrium over some restoration scale.
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