# Deconstructing quantum decoherence in atmospheric turbulence

#### F. Stef Roux

**CSIR National Laser Centre, South Africa** 

Presented at the School of Chemistry and Physics - Quantum Research Group University of KwaZulu-Natal 12 June 2012



## Contents

- Classical and quantum scintillation
- > Time vs propagation distance
- Current paradigm: Paterson model
- Infinitesimal approach: IPE and its properties
- > Optimal quantum states

#### **Classical scintillation**



#### Turbulence

Scintillation is caused by random phase modulations due to refractive index fluctuations in a turbulence atmosphere

Refractive index fluctuations:  $n(\mathbf{r}) = 1 + \tilde{n}(\mathbf{r})$ 

Any <u>scintillation model</u> requires a <u>turbulence model</u> such as, Kolmogorov, von Karman, Tartarskii<sup>a</sup>

Turbulence models are defined by the structure function  $D(\mathbf{r})$  or the power spectral density  $\Phi(\mathbf{k})$ 

of the refractive index fluctuations

<sup>&</sup>lt;sup>a</sup>LC Andrews and RL Phillips, *Laser beam propagation through random media*, 2nd ed. SPIE Press (2005)

#### **Turbulence model**



Structure function:

 $D(\Delta \mathbf{r}) = \langle \left[ \tilde{n}(\mathbf{r}_1) - \tilde{n}(\mathbf{r}_2) \right]^2 \rangle = 2B(0) - 2B(\Delta \mathbf{r})$ 

where  $B(\Delta \mathbf{r}) = \langle \tilde{n}(\mathbf{r}_1) \tilde{n}(\mathbf{r}_2) \rangle$  and  $\Delta \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ Wiener-Kintchine:  $\Phi_n(\mathbf{k}) = \frac{1}{(2\pi)^3} \int B(\mathbf{r}) \exp(-i\mathbf{k} \cdot \mathbf{r}) d^3 r$  $\Phi_n(\mathbf{k})$  — Power spectral density Kolmogorov:  $\Phi_n(\mathbf{k}) = 0.033 C_n^2 |\mathbf{k}|^{-11/3}$ 

 $C_n^2$  — Refractive index structure constant

### **Quantum mechanical scintillation**



### **Temporal behaviour**



Ensemble averaging over different instances of the medium

Wave function: Constant over time — varying along z

# **Evolve in space**



State defined on 2D plane — evolves as function of z

Instead of  $i\hbar \partial_t \rho(t) = [H, \rho(t)]$ 

we need  $\partial_z \rho(z) = i \mathcal{P} \{ \rho(z) \}$ 

# Paterson model (PM)

Assuming weak scintillation (only affects the phase)<sup>a</sup>

Use single phase screen:



Quantum operation:  $\rho_{out}(z) = U \rho_{in} U^{\dagger}$  where  $\rho_{in} = |\psi\rangle \langle \psi|$ 

<sup>&</sup>lt;sup>a</sup>C. Paterson, Phys. Rev. Lett., **94**, 153901 (2005)

# **Density matrix in PM**

Density matrix elements:  $\rho_{mn}(z) = \langle m | U | \psi \rangle \langle \psi | U^{\dagger} | n \rangle$ 

$$\langle m|U|\psi\rangle = \int \langle m|\mathbf{r}\rangle \langle \mathbf{r}|U|\psi\rangle \,\mathrm{d}^2r$$

where  $\langle \mathbf{r} | m \rangle = E_m(\mathbf{r})$  with  $E_m(\mathbf{r})$  — mode function

Single phase screen approximation:  $\langle \mathbf{r} | U | \psi \rangle = \exp[i\theta(\mathbf{r})]\psi(\mathbf{r})$ 

with  $\psi(\mathbf{r})$  — input beam;  $\theta(\mathbf{r})$  — random phase of medium  $\langle m|U|\psi\rangle = \int E_m^*(\mathbf{r}) \exp\left[i\theta(\mathbf{r})\right]\psi(\mathbf{r}) d^2r$ 

Density matrix element:

$$\rho_{mn}(z) = \iint E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \psi(\mathbf{r}_1) \psi^*(\mathbf{r}_2)$$
$$\times \exp\left[i\theta(\mathbf{r}_1) - i\theta(\mathbf{r}_2)\right] \, \mathrm{d}^2 r_1 \, \mathrm{d}^2 r_2$$

### **Ensemble averaging in PM**

After ensemble averaging

$$\langle \exp\left[i\theta(\mathbf{r}_1) - i\theta(\mathbf{r}_2)\right] \rangle = \exp\left[-\frac{1}{2}D\left(|\mathbf{r}_1 - \mathbf{r}_2|\right)\right]$$

Structure function:  $D(x) = 6.88 \left(\frac{x}{r_0}\right)^{5/3}$ 

Ensemble averaged density matrix element:

$$\rho_{mn}(z) = \int \int E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \psi(\mathbf{r}_1) \psi^*(\mathbf{r}_2)$$
$$\times \exp\left[-\frac{1}{2} D\left(|\mathbf{r}_1 - \mathbf{r}_2|\right)\right] d^2 r_1 d^2 r_2$$

# **Deconstructing PM**

Some observations about the Paterson model:

- ▷ Only depends on ω<sub>0</sub>/r<sub>0</sub>
  No other adjustable dimension parameters (Follows by defining dimensionless integration variables)
- ▷ Full *z*-dependence inside  $\omega_0/r_0$ , which is inside  $D(\cdot)$ Modes are evaluated at z = 0
- $\triangleright$  Ensemble averaging connects U with  $U^{\dagger}$  into one tensor
- ▷ ⇒ Concurrence decays as function of  $\omega_0/r_0$  only Decays to zero (sudden death) at  $\omega_0/r_0 \approx 1$ Last longer for larger azimuthal indices

# **Concurrence decay in PM**



For point where  $\mathcal{C} \to 0$ :

- $\triangleright$  If  $C_n^2$  is small  $\Rightarrow$  distance z is large
- $\triangleright$  If distance z small  $\Rightarrow C_n^2$  is large

Is the approximation still valid where  $\mathcal{C} \rightarrow 0$ ?

<sup>&</sup>lt;sup>a</sup>B.J. Smith and M.G. Raymer, Phys. Rev. A, **74**, 062104 (2006)

### **Rytov variance**

To distinguish between strong and weak scintillation for Gaussian modes with radius  $\omega_0$ , one can use the Rytov variance:

$$\sigma_R^2 = 1.23C_n^2 k^{7/6} z^{11/6} = 1.637 \ t^{5/6} \left(\frac{\omega_0}{r_0}\right)$$

where t is the normalized propagation distance:  $t = \frac{\lambda z}{\pi \omega_0^2}$ 

Weak scintillation:  $\sigma_R^2 < (t + 1/t)^{5/6}$  (and  $\sigma_R^2 < 1$  ?) Strong scintillation:  $\sigma_R^2 > (t + 1/t)^{5/6}$  (or  $\sigma_R^2 > 1$  ?) Concurrence decays at about  $\sigma_R^2 t^{-5/6} = 1.637(\omega_0/r_0)^{5/3} \approx 1$ 



# Is PM good enough?

If concurrence always decays before scintillation becomes strong shouldn't one just stay with the Paterson model?

- Does the weak/strong boundary apply to quantum entanglement?
  - $\rightarrow$  numerical simulations
- What about higher azimuthal indices (large OAM)?
- How big is the error due to the quadratic structure function approximation?
  - $\rightarrow$  infinitesimal approach

### Infinitesimal approach

Consider again the single phase screen integral  $\rho_{mn}(z) = \int E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \psi(\mathbf{r}_1) \psi^*(\mathbf{r}_2) \exp(-D/2) \, \mathrm{d}^2 r_1 \, \mathrm{d}^2 r_2$ where  $D = 144 \ z C_n^2 |\mathbf{r}_1 - \mathbf{r}_2|^{5/3} / \lambda^2 = z D_0 (\mathbf{r}_1 - \mathbf{r}_2)$ Turbulent atmosphere Now, instead of going from 0 to zin 1 step, we proceed in many small steps of dz $\rho(z)$  $\neg \rho(z+dz)$ 

$$\rho_{mn}(z_0 + dz) = \int E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \sum_{pq} \rho_{pq}(z_0) E_p(\mathbf{r}_1) E_q^*(\mathbf{r}_2) \\ \times \left[ 1 - \frac{dz D_0(\mathbf{r}_1 - \mathbf{r}_2)}{2} \right] d^2 r_1 d^2 r_2$$

# **Evolution equation**

$$\partial_{z}\rho_{mn}(z) = -\frac{1}{2} \sum_{pq} \rho_{pq}(z) \int E_{m}^{*}(\mathbf{r}_{1}) E_{n}(\mathbf{r}_{2})$$
$$\times E_{p}(\mathbf{r}_{1}) E_{q}^{*}(\mathbf{r}_{2}) D_{0}(\mathbf{r}_{1} - \mathbf{r}_{2}) d^{2}r_{1} d^{2}r_{2}$$
$$= \sum_{pq} \mathcal{T}_{mnpq} \rho_{pq}(z)$$

- 1. Extend to bi-partite case
- 2. Solve the equation to find  $\rho$
- 3. Calculate the concurrence
- 4. (Ignoring modal z-dependence)



 $\rightarrow$  Principle behind the derivation of the IPE

# The IPE

#### Infinitesimal propagator equation (IPE):<sup>a</sup>

$$\partial_z \rho_{mnpq} = S_{xm} \rho_{xnpq} - S_{nx} \rho_{mxpq} + S_{xp} \rho_{mnxq} - S_{qx} \rho_{mnpx} + L_{xymn} \rho_{xypq} + L_{xypq} \rho_{mnxy} - 2L_T \rho_{mnpq}$$

First row: free-space propagation terms Second row: dissipative terms

$$L_{mnpq} = k^2 \int \Phi_1(\mathbf{K}) W_{mp}^*(\mathbf{K}) W_{nq}(\mathbf{K}) \frac{\mathrm{d}^2 K}{4\pi^2}$$
$$W_{mn}(\mathbf{K}) = \int G_m(\mathbf{K}') G_n^*(\mathbf{K}' - \mathbf{K}) \frac{\mathrm{d}^2 K'}{4\pi^2}$$
$$\Phi_1(\mathbf{K}) = (2\pi)^3 \Phi_n(\mathbf{k}) = 0.033(2\pi)^3 C_n^2 |\mathbf{k}|^{-11/3}$$

#### <sup>a</sup>FS Roux, Phys. Rev. A, **83**, 053822 (2011)

#### **Properties of the IPE**

- Derived in Fourier domain
  Based on power spectral density:  $\Phi_n(\mathbf{k})$
- ▷ Transverse spatial modes
  - $\rightarrow$  infinite dimensional Hilbert space
  - $\Rightarrow$  IPE is an infinite set of coupled differential equations
  - To solve them one needs to truncate the set  $\Rightarrow$  truncated IPE is not trace preserving: tr{ $\rho$ }  $\leq 1$ Some energy is scattered into excluded higher order modes
- ▷ The resulting density matrix is <u>hermitian</u> Follows from identity:  $L_{mnpq} = L_{nmqp}^*$
- $\triangleright$  Positivity  $\rightarrow$  only a skeleton argument yet ...

# **Positivity of the IPE**

Infinitesimal propagation as a quantum operation:

 $\rho(z+dz) = dU \ \rho(z) \ dU^{\dagger}$  where  $dU = U(z \to z+dz)$ 

Ensemble averaging:

$$\rho(z+dz) = \sum_{n=1}^{N} \frac{1}{N} dU_n \ \rho(z) \ dU_n^{\dagger}$$

where  $dU_n$  — infinitesimal propagation through different instances of medium

Since 
$$dU_n \sim \exp(i\theta_n) \implies (1/N) \sum_n^N dU_n dU_n^{\dagger} = 1$$

This has the form of an <u>operator product expansion</u>, which obeys positivity

 $\rightarrow$  Lindblad form?

$$\partial_z \rho = i[P,\rho] + \sum_n \gamma_n (2L_n \rho L_n^{\dagger} - \rho L_n^{\dagger} L_n - L_n^{\dagger} L_n \rho)$$

#### **Deconstructing the IPE**

Density matrix elements (one photon state):

$$\rho_{mn}(z_0 + dz) = \sum_{s}^{N} \frac{1}{N} \langle m | dU_s | p \rangle \ \rho_{pq}(z_0) \ \langle q | dU_s^{\dagger} | n \rangle$$
$$|m\rangle = \int G_m(\mathbf{K}, z) | \mathbf{K} \rangle \ \frac{\mathrm{d}^2 K}{4\pi^2} \qquad \langle \mathbf{K} | m \rangle = G_m(\mathbf{K}, z)$$

Equation of motion in turbulence:

$$\nabla_T^2 g(\mathbf{x}) - i2k\partial_z g(\mathbf{x}) + 2k^2 \tilde{n}(\mathbf{x})g(\mathbf{x}) = 0$$

In (transverse) Fourier domain:

$$-|\mathbf{K}|^2 G(\mathbf{K}, z) - i2k\partial_z G(\mathbf{K}, z) + 2k^2 N(\mathbf{K}) \star G(\mathbf{K}, z) = 0$$

 $G(\mathbf{K}, z_0 + dz) = G(\mathbf{K}, z_0) + \frac{idz}{2k} \left[ |\mathbf{K}|^2 G(\mathbf{K}, z_0) - 2k^2 N(\mathbf{K}) \star G(\mathbf{K}, z_0) \right]$ 

#### **First order toward IPE**

If  $G(\mathbf{K}, z_0) = G_m(\mathbf{K}, z_0)$  then  $G(\mathbf{K}, z_0 + dz) \neq G_m(\mathbf{K}, z_0 + dz)$ due to noise term

$$\langle m | dU_s | p \rangle = \delta_{mp} + \frac{idz}{2k} \int G_m^*(\mathbf{K}, z_0) \left[ |\mathbf{K}|^2 G_p(\mathbf{K}, z_0) -2k^2 N_s(\mathbf{K}, z_0) \star G_p(\mathbf{K}, z_0) \right] \frac{d^2 K}{4\pi^2}$$
$$= \delta_{mp} + idz \ \mathcal{P}_{mp} + dz \ \mathcal{L}_{s,mp}$$

Density matrix elements:

$$\rho_{mn}(z_0 + dz) = \rho_{mn}(z_0) + idz \left[\mathcal{P}, \rho(z_0)\right]_{mn} + dz \sum_{s}^{N} \frac{1}{N} \left[\mathcal{L}_{s,mp}\rho_{pn}(z_0) + \rho_{mq}(z_0)\mathcal{L}_{s,qn}^{\dagger}\right]$$

Need to go to 2nd order for ensemble averages  $\rightarrow$  (?) IPE in Lindblad form

# **Truncating the IPE**

- Modes couple to other modes due to scintillation
- Unitary process:
  Coupling coefficients are elements of unitary matrix
- Neigbouring modes have stronger couple than modes further apart
- ▷ Repeated process
  → backward coupling
  (perhaps neglectable?)



# **Truncation vs open system**

- Open system case: Information flow from system to environment
- Truncated case:
  Information flow
  from lower order modes
  to higher order modes
- Full system:Unitary process
- Truncated system:
  NOT unitary ('sub'-unitary)



IPE is a combination of both

# Inter- and intra-modal coupling

#### Do we need to be concerned about backward coupling?





#### State of the union for the IPE

Can we trust the IPE?

- $\triangleright~$  Not trace preserving  $\rightarrow$  can renormalize
- ⊳ Hermitian
- ▷ Positivity → fighting chance Needs more work
- $\triangleright~\mbox{Truncation} \rightarrow \mbox{backward coupling is small}$
- Predictions do not agree with Paterson model Which one is correct?

 $\rightarrow$  experimental measurements and numerical simulations

#### **Robust states**

Are the maximally entangled states also the ones that will retain most entanglement after propagation through turbulence? If not, what are the most robust states?

- ▷ Solve IPE for:
  - symmetric and asymmetric qubits (2D)
  - symmetric qutrits (3D)
- > Arbitrary initial pure state
- Consider decoherence of:
  - Bell states (2D subspace in qutrit states)
  - Maximally entangled qutrit states
  - Optimized qutrit states
- Within Rytov limit (small distances)

### Symmetric qubit

For symmetric qubit:

$$|\psi\rangle = \cos(\phi/2)\exp(i\alpha)|1,1\rangle + \sin(\phi/2)\exp(-i\alpha)|-1,-1\rangle$$

Normalized propagation distance:

 $X = \frac{54.1z\omega_0^{5/3}C_n^2}{\lambda^2}$ Independent of  $\alpha$ Violates factorization law<sup>a</sup>

<sup>a</sup>T Konrad, et al., Nature Physics, **4**, 99 (2008)

3

Angle parameter [radian]

# **Asymmetric qubit**

For asymmetric qubit:

 $|\psi\rangle = \cos(\phi/2)\exp(i\alpha)|1,1\rangle + \sin(\phi/2)\exp(-i\alpha)|0,0\rangle$ 

Normalized propagation distance: X

Asymmetric in inter-modal coupling

Decays quicker due to stronger intra-modal coupling



### **Maximally entangled qutrits**

Tangle:  $\tau = 2 \operatorname{tr} \{\rho^2\} - \operatorname{tr} \{\rho_1^2\} - \operatorname{tr} \{\rho_2^2\}$ Theoretical maximum for qutrits:  $\tau = 4/3$ 

State 1 (
$$\phi = 0$$
):  
 $|1,1\rangle + |0,0\rangle + |-1,-1\rangle$ 

State 1 (
$$\phi = \pi$$
):  
 $|1,1\rangle + i|0,0\rangle + |-1,-1\rangle$ 

State 2:  $|1,1\rangle + |0,-1\rangle + |-1,0\rangle$ 



#### **Bell states**

#### Three sets: Set 1: $\{|\pm 1,\pm 1\rangle \pm |0,0\rangle\}$ Set 2: $\{|\pm 1,0\rangle \pm |0,\pm 1\rangle\}$ Set 3: $\{|1,-1\rangle \pm |-1,1\rangle, |1,1\rangle \pm |-1,-1\rangle\}$

Decay at different rates due to difference in intra-modal coupling strengths



# **Optimized qutrits**

Use additional parameters for relative weighting of terms State 1:  $\cos(\beta)|1,1\rangle + \sin(\beta)\exp(i\phi)|0,0\rangle + \cos(\beta)|-1,-1\rangle$ State 2:  $\sin(\beta)|1,1\rangle + \cos(\beta)|0,-1\rangle + \cos(\beta)|-1,0\rangle$ 



### **Optimized parameter**

# The optimization parameters depend on the propagation distance

State 1:  $\cos(\beta)|1,1\rangle + \sin(\beta)\exp(i\phi)|0,0\rangle + \cos(\beta)|-1,-1\rangle$ State 2:  $\sin(\beta)|1,1\rangle + \cos(\beta)|0,-1\rangle + \cos(\beta)|-1,0\rangle$ 



 $|\cos(2\beta)|$  as function of propagation distance

#### **Optimized trace**

#### Consider

 $|\psi\rangle = \cos(kh)|0,0\rangle + \sin(kh)[\cos(kd)|\pm 1,\pm 1\rangle + \sin(kd)|0,\pm 1\rangle]$ One can optimize the trace but ....

Optimized trace implies NO entanglement

Trace and entanglement work against each other



### Conclusions

- $\triangleright$  Decoherence in turbulence needs equation in z
- ▷ Paterson model single phase screen
  - Concurrence decays to zero in weak to moderate turbulence
  - Quadratic structure function approximation
  - Higher order OAM beyond weak limit
- IPE could be OK but
  - Positivity still needs confirmation
  - Effect of truncation
- Possible to improve robustness
- Trace decays sooner than entanglement
  → Could be the most serious issue for quantum communication