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Classical scintillation
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Turbulence

Scintillation is caused by random phase modulations due to
refractive index fluctuations in a turbulence atmosphere

Refractive index fluctuations: n(r) = 1 + ñ(r)

Any scintillation model requires a turbulence model such
as, Kolmogorov, von Karman, Tartarskiia

Turbulence models are defined by the
structure function D(r) or the
power spectral density Φ(k)

of the refractive index fluctuations

aLC Andrews and RL Phillips, Laser beam propagation through random media,

2nd ed. SPIE Press (2005)
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Turbulence model
Turbulent atmosphere

dr

ψ(r)

z=L

ψ(r+dr)

Structure function:

D(∆r) = 〈[ñ(r1)− ñ(r2)]
2〉 = 2B(0)− 2B(∆r)

where B(∆r) = 〈ñ(r1)ñ(r2)〉 and ∆r = r1 − r2

Wiener-Kintchine: Φn(k) =
1

(2π)3

∫

B(r) exp(−ik · r) d3r

Φn(k) — Power spectral density

Kolmogorov: Φn(k) = 0.033C2

n|k|
−11/3

C2
n — Refractive index structure constant
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Quantum mechanical scintillation
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Temporal behaviour

Time

Propagation distance

Integration
time

Turbulent atmosphere

Photons

Detection

Ensemble averaging over different instances of the medium

Wave function: Constant over time — varying along z
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Evolve in space

z

Evolves as function of z

Turbulent atmosphere

Ψ Ψx,y (x,y)

State defined on 2D plane — evolves as function of z

Instead of i~ ∂tρ(t) = [H, ρ(t)]

we need ∂zρ(z) = iP {ρ(z)}
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Paterson model (PM)
Assuming weak scintillation (only affects the phase)a

Use single phase screen:

Phase screenTurbulent
atmosphere Turbulence       r   (Fried parameter)

0

Fried parameter (distance): r0 = 0.185

(

λ2

C2
nz

)3/5

Quantum operation: ρout(z) = UρinU
† where ρin = |ψ〉〈ψ|

aC. Paterson, Phys. Rev. Lett., 94, 153901 (2005)
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Density matrix in PM

Density matrix elements: ρmn(z) = 〈m|U |ψ〉〈ψ|U †|n〉

〈m|U |ψ〉 =

∫

〈m|r〉〈r|U |ψ〉 d2r

where 〈r|m〉 = Em(r) with Em(r) — mode function

Single phase screen approximation: 〈r|U |ψ〉 = exp[iθ(r)]ψ(r)

with ψ(r) — input beam; θ(r) — random phase of medium

〈m|U |ψ〉 =

∫

E∗
m(r) exp [iθ(r)]ψ(r) d2r

Density matrix element:

ρmn(z) =

∫ ∫

E∗
m(r1)En(r2)ψ(r1)ψ

∗(r2)

× exp [iθ(r1)− iθ(r2)] d
2r1 d

2r2
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Ensemble averaging in PM
After ensemble averaging

〈exp [iθ(r1)− iθ(r2)]〉 = exp

[

−
1

2
D (|r1 − r2|)

]

Structure function: D(x) = 6.88

(

x

r0

)5/3

Ensemble averaged density matrix element:

ρmn(z) =

∫ ∫

E∗
m(r1)En(r2)ψ(r1)ψ

∗(r2)

× exp

[

−
1

2
D (|r1 − r2|)

]

d2r1 d
2r2
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Deconstructing PM

Some observations about the Paterson model:

⊲ Only depends on ω0/r0
No other adjustable dimension parameters
(Follows by defining dimensionless integration
variables)

⊲ Full z-dependence inside ω0/r0, which is inside D(·)
Modes are evaluated at z = 0

⊲ Ensemble averaging connects U with U † into one tensor

⊲ ⇒ Concurrence decays as function of ω0/r0 only
Decays to zero (sudden death) at ω0/r0 ≈ 1
Last longer for larger azimuthal indices
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Concurrence decay in PM
Decay of qubit OAM entanglement
(concurrence C) in turbulencea

Quadratic structure function
approximation:

D ∼

(

x

r0

)5/3

→

(

x

r0

)2 C
o

n
c
u

rr
e

n
c
e

w  /r 
0 0For point where C → 0:

⊲ If C2
n is small ⇒ distance z is large

⊲ If distance z small ⇒ C2
n is large

Is the approximation still valid where C → 0?

aB.J. Smith and M.G. Raymer, Phys. Rev. A, 74, 062104 (2006)
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Rytov variance
To distinguish between strong and weak scintillation for
Gaussian modes with radius ω0, one can use the Rytov
variance:

σ2R = 1.23C2

nk
7/6z11/6 = 1.637 t5/6

(

ω0
r0

)5/3

where t is the normalized propagation distance: t =
λz

πω2
0

Normalized propagation distance
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Strong

scintillation

  =(t+1/t)
5/62

Weak scintillation:
σ2R < (t+ 1/t)5/6 (and σ2R < 1 ?)
Strong scintillation:
σ2R > (t+ 1/t)5/6 (or σ2R > 1 ?)

Concurrence decays at about
σ2Rt

−5/6 = 1.637(ω0/r0)
5/3 ≈ 1
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Is PM good enough?

If concurrence always decays before scintillation becomes
strong shouldn’t one just stay with the Paterson model?

⊲ Does the weak/strong boundary apply to quantum
entanglement?
→ numerical simulations

⊲ What about higher azimuthal indices (large OAM)?

⊲ How big is the error due to the quadratic structure
function approximation?
→ infinitesimal approach
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Infinitesimal approach
Consider again the single phase screen integral

ρmn(z) =

∫

E∗
m(r1)En(r2)ψ(r1)ψ

∗(r2) exp (−D/2) d2r1 d
2r2

where D = 144 zC2
n|r1 − r2|

5/3/λ2 = zD0(r1 − r2)

Now, instead of going from 0 to z
in 1 step, we proceed in many
small steps of dz

Turbulent
atmosphere

dz

ρ(z+dz)ρ(z)

ρmn(z0 + dz) =

∫

E∗
m(r1)En(r2)

∑

pq

ρpq(z0)Ep(r1)E
∗
q (r2)

×

[

1−
dzD0(r1 − r2)

2

]

d2r1 d
2r2
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Evolution equation

∂zρmn(z) = −
1

2

∑

pq

ρpq(z)

∫

E∗
m(r1)En(r2)

×Ep(r1)E
∗
q (r2)D0(r1 − r2) d

2r1 d
2r2

=
∑

pq

Tmnpq ρpq(z)

1. Extend to bi-partite case

2. Solve the equation to find ρ

3. Calculate the concurrence

4. (Ignoring modal
z-dependence)

w
00
r/
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o
n
c
u
rr
e
n
c
e

→ Principle behind the derivation of the IPE
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The IPE
Infinitesimal propagator equation (IPE):a

∂zρmnpq = Sxmρxnpq − Snxρmxpq + Sxpρmnxq − Sqxρmnpx

+Lxymnρxypq + Lxypqρmnxy − 2LTρmnpq

First row: free-space propagation terms
Second row: dissipative terms

Lmnpq = k2
∫

Φ1(K)W ∗
mp(K)Wnq(K)

d2K

4π2

Wmn(K) =

∫

Gm(K
′)G∗

n(K
′ −K)

d2K ′

4π2

Φ1(K) = (2π)3Φn(k) = 0.033(2π)3C2

n|k|
−11/3

aFS Roux, Phys. Rev. A, 83, 053822 (2011)
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Properties of the IPE

⊲ Derived in Fourier domain
Based on power spectral density: Φn(k)

⊲ Transverse spatial modes
→ infinite dimensional Hilbert space
⇒ IPE is an infinite set of coupled differential equations

To solve them one needs to truncate the set
⇒ truncated IPE is not trace preserving: tr{ρ} ≤ 1

Some energy is scattered into excluded higher order
modes

⊲ The resulting density matrix is hermitian
Follows from identity: Lmnpq = L∗

nmqp

⊲ Positivity → only a skeleton argument yet ...
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Positivity of the IPE
Infinitesimal propagation as a quantum operation:

ρ(z + dz) = dU ρ(z) dU † where dU = U(z → z + dz)

Ensemble averaging: ρ(z + dz) =

N
∑

n

1

N
dUn ρ(z) dU

†
n

where dUn — infinitesimal propagation through different
instances of medium

Since dUn ∼ exp(iθn) ⇒ (1/N)
∑N

n dUndU
†
n = 1

This has the form of an operator product expansion, which
obeys positivity

→ Lindblad form?
∂zρ = i[P, ρ] +

∑

n

γn(2LnρL
†
n − ρL†

nLn − L†
nLnρ)
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Deconstructing the IPE

Density matrix elements (one photon state):

ρmn(z0 + dz) =

N
∑

s

1

N
〈m|dUs|p〉 ρpq(z0) 〈q|dU

†
s |n〉

|m〉 =

∫

Gm(K, z)|K〉
d2K

4π2
〈K|m〉 = Gm(K, z)

Equation of motion in turbulence:

∇2

T g(x)− i2k∂zg(x) + 2k2ñ(x)g(x) = 0

In (transverse) Fourier domain:

−|K|2G(K, z)− i2k∂zG(K, z) + 2k2N(K) ⋆ G(K, z) = 0

G(K, z0+dz) = G(K, z0)+
idz

2k

[

|K|2G(K, z0)− 2k2N(K) ⋆ G(K, z0)
]
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First order toward IPE
If G(K, z0) = Gm(K, z0) then G(K, z0 + dz) 6= Gm(K, z0 + dz)
due to noise term

〈m|dUs|p〉 = δmp +
idz

2k

∫

G∗
m(K, z0)

[

|K|2Gp(K, z0)

−2k2Ns(K, z0) ⋆ Gp(K, z0)
] d2K

4π2

= δmp + idz Pmp + dz Ls,mp

Density matrix elements:

ρmn(z0 + dz) = ρmn(z0) + idz [P , ρ(z0)]mn

+dz

N
∑

s

1

N

[

Ls,mpρpn(z0) + ρmq(z0)L
†
s,qn

]

Need to go to 2nd order for ensemble averages → (?) IPE
in Lindblad form
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Truncating the IPE

⊲ Modes couple to other modes
due to scintillation

⊲ Unitary process:
Coupling coefficients are
elements of unitary matrix

⊲ Neigbouring modes have
stronger couple than
modes further apart

⊲ Repeated process
→ backward coupling
(perhaps neglectable?)
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Truncation vs open system
⊲ Open system case:

Information flow
from system to
environment

⊲ Truncated case:
Information flow
from lower order modes
to higher order modes

⊲ Full system:
Unitary process

⊲ Truncated system:
NOT unitary
(‘sub’-unitary)

Truncated
System

Environment

System

Coupling

Coupling

Open
system

Infinite
system

IPE is a combination of both
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Inter- and intra-modal coupling
Do we need to be concerned about backward coupling?
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⇒ backward coupling
is minimal
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State of the union for the IPE

Can we trust the IPE?

⊲ Not trace preserving → can renormalize

⊲ Hermitian

⊲ Positivity → fighting chance
Needs more work

⊲ Truncation → backward coupling is small

⊲ Predictions do not agree with Paterson model
Which one is correct?
→ experimental measurements and numerical
simulations
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Robust states
Are the maximally entangled states also the ones that will
retain most entanglement after propagation through
turbulence? If not, what are the most robust states?

⊲ Solve IPE for:

— symmetric and asymmetric qubits (2D)
— symmetric qutrits (3D)

⊲ Arbitrary initial pure state

⊲ Consider decoherence of:

— Bell states (2D subspace in qutrit states)
— Maximally entangled qutrit states
— Optimized qutrit states

⊲ Within Rytov limit (small distances)
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Symmetric qubit
For symmetric qubit:

|ψ〉 = cos(φ/2) exp(iα)|1, 1〉+ sin(φ/2) exp(−iα)| − 1,−1〉

Normalized propagation distance:

X =
54.1zω

5/3
0
C2
n

λ2
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Independent of α

Violates factorization lawa

aT Konrad, et al., Nature Physics, 4, 99 (2008)
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Asymmetric qubit
For asymmetric qubit:

|ψ〉 = cos(φ/2) exp(iα)|1, 1〉+ sin(φ/2) exp(−iα)|0, 0〉

Normalized propagation distance: X
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X=3/4Asymmetric in
inter-modal coupling

Decays quicker
due to stronger
intra-modal coupling
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Maximally entangled qutrits

Tangle: τ = 2 tr{ρ2} − tr{ρ2
1
} − tr{ρ2

2
}

Theoretical maximum for qutrits: τ = 4/3

State 1 (φ = 0):
|1, 1〉 + |0, 0〉 + | − 1,−1〉

State 1 (φ = π):
|1, 1〉 + i|0, 0〉 + | − 1,−1〉

State 2:
|1, 1〉 + |0,−1〉+ | − 1, 0〉
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Bell states
Three sets:
Set 1: {| ± 1,±1〉 ± |0, 0〉}
Set 2: {| ± 1, 0〉 ± |0,±1〉}
Set 3: {|1,−1〉 ± | − 1, 1〉, |1, 1〉 ± | − 1,−1〉}
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Decay at different rates
due to difference in
intra-modal coupling
strengths
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Optimized qutrits
Use additional parameters for relative weighting of terms

State 1: cos(β)|1, 1〉 + sin(β) exp(iφ)|0, 0〉+ cos(β)| − 1,−1〉

State 2: sin(β)|1, 1〉 + cos(β)|0,−1〉+ cos(β)| − 1, 0〉
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Optimized parameter
The optimization parameters
depend on the propagation distance

State 1: cos(β)|1, 1〉 + sin(β) exp(iφ)|0, 0〉+ cos(β)| − 1,−1〉
State 2: sin(β)|1, 1〉 + cos(β)|0,−1〉+ cos(β)| − 1, 0〉
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propagation distance
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Optimized trace

Consider
|ψ〉 = cos(kh)|0, 0〉+ sin(kh) [cos(kd)| ± 1,±1〉+ sin(kd)|0,±1〉]

One can optimize the trace but ....
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Optimized trace implies
NO entanglement

Trace and entanglement
work against each other
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Conclusions

⊲ Decoherence in turbulence needs equation in z

⊲ Paterson model — single phase screen

— Concurrence decays to zero in weak to moderate
turbulence

— Quadratic structure function approximation
— Higher order OAM beyond weak limit

⊲ IPE — could be OK but

— Positivity still needs confirmation
— Effect of truncation

⊲ Possible to improve robustness

⊲ Trace decays sooner than entanglement
→ Could be the most serious issue for quantum
communication
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