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The coherent superposition of a Gaussian beam with an optical vortex can be mathematically

described to occupy the complex plane. We provide a simple analogy between the mathematics, in

the form of the complex plane, and the visual representation of these two superimposed optical

fields. We provide detailed instructions as to how one can experimentally produce, measure, and

control these fields with the use of digital holograms encoded on a spatial light modulator. VC 2016
American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4935354]

I. INTRODUCTION

Vortex beams are optical fields whose wave-fronts vary
along a helical or “twisted” path, resulting in orbital angular
momentum (OAM) being carried along the beam’s axis.1

The orbital contribution is defined by the field’s azimuthal
phase dependence ei‘/, where / is the azimuthal angle and
‘ is the azimuthal index, and is equivalent to an angular mo-
mentum of ‘�h per photon. These vortex-type beams that
carry OAM were first experimentally realized as Laguerre-
Gaussian (LG) laser modes,1,2 and a plethora of devices
exists for their creation, such as spiral phase plates,3 “fork”
holograms,4,5 spatial light modulators6,7 (SLMs), and custom
laser resonators.8 Since their discovery, vortex beams have
been applied to strong femtosecond laser pulses9 and
have found applications in optical tweezing,10 the steering
of micro-machines,11–13 stimulated emission depletion
microscopy,14 non-linear processes in high harmonic genera-
tion,15,16 quantum entanglement,17–20 and optical
communication.21,22

Often, when implementing vortex beams in the aforemen-
tioned applications, efficient measurement techniques for
these OAM-carrying modes are frequently required. It is
well known that when a computer-generated hologram,
encoded with an ‘-fold “fork” dislocation, is illuminated
with a Gaussian beam, a vortex beam carrying the same
“charge” as the hologram (‘) is produced in the first diffrac-
tion order.4,5 From the reciprocity of light, an incoming vor-
tex beam of charge ‘, which is equal to the number of fork
dislocations present in the hologram, produces a Gaussian
beam in the first diffraction order. By detecting the
Gaussian mode (e.g., by using a single-mode fibre that only
couples in the Gaussian mode), we can infer the charge of
the initial beam from the charge of the hologram.17 Another
solution involves triangular apertures,23–25 where analysis
of the resulting two-dimensional interference pattern
denotes the OAM spectrum carried by the beam of interest.
Dove prism interferometers26,27 can be used for the sorting
of odd and even OAM modes, and recent work has shown
that two diffractive optical elements can be used to

transform OAM states into transverse momentum states.28,29

The latter is capable of measuring any OAM mode as well
as superpositions and has successfully been applied to LG
and Bessel beams.30,31 Stokes polarimetery has also shown
to be a useful tool in digitally extracting the wavefronts of
structured light beams.32 A more elegant approach capable
of determining the intermodal phases between modes in a
superposition involves executing an optical inner-product
with the field of interest and some match filter encoded as a
computer generated hologram, which is known as modal
decomposition.33–35

Since many classical and quantum optics laboratories
require that one has the necessary skills to create and mea-
sure superpositions of optical fields (in particular those that
carry OAM), we demonstrate how one can implement an
SLM to generate and verify such fields. In this paper, we
show how to construct a coherent superposition between a
Gaussian beam (‘ ¼ 0) and an optical vortex that carries a
single unit of OAM (‘ ¼ 1) with the use of an SLM. In addi-
tion, we show how one is able to control the amplitude and
phase ratios between the two superimposed modes and how
this can be visualized in the complex plane. Once these fields
have been experimentally realized, we discuss two separate
techniques for extracting the ratio of the constituent compo-
nents that make up these fields. The first method simply
involves using a CCD camera to measure the peak intensities
at two adjacent points in the resultant field, while the second
method requires an additional SLM to perform a modal
decomposition on the resultant field. Although we provide a
simple demonstration of the generation and measurement
techniques for superimposed optical fields, these methods
can be adapted and extended to more complicated scenarios.

The remainder of this paper is organized as follows. In
Sec. II, the theory linking the superposition of a Gaussian
beam with an optical vortex carrying an OAM value of ‘ ¼ 1
to the complex plane is developed, and some simple formu-
las dictating how the amplitude and phase ratios between the
two fields can be represented in the complex plane are given.
A demonstration of how these fields that occupy the complex
plane are generated is provided in Sec. III, which contains
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the basic operation of the SLM as well as how the experi-
mental setup is constructed. In Sec. IV, we outline the two
measurement techniques and accompany each with a
detailed procedure and exemplary results.

II. THEORY: MIXED MODES REPRESENTED IN

THE COMPLEX PLANE

In this work, we are interested in the coherent superposi-
tion of a Gaussian beam uGauss, whose 2D and cross-
sectional intensity profiles (I ¼ u�u, with � representing
complex conjugation) are shown in Figs. 1(a) and 1(d), with
an optical vortex uvortex, shown in Figs. 1(b) and 1(e).
Mathematically, the superposition of these two fields,
depicted visually in Figs. 1(c) and 1(f), can be written as

uðr;/Þ ¼ uvortexðr;/Þ þ uGaussðrÞ
¼ ½rei/ þ r0ei/�GðrÞ; (1)

where GðrÞ ¼ e�r2=x2

is the standard Gaussian term with
beam radius x, and ðr;/Þ are the spatial (radial and azi-
muthal) coordinates; r0;/0 can be interpreted as the ampli-
tude and phase of the Gaussian mode, respectively.

From basic trigonometry, the polar coordinates (r;/) in
Eq. (1) can be re-written in Cartesian (x, y) coordinates:
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and / ¼ arctanðy=xÞ, so that our vortex mode

can be expressed as rei/ ¼ xþ iy. Similarly, writing the
Gaussian mode as r0ei/0 ¼ x0 þ iy0, the superposition field
in Eq. (1) can be written

uðx; yÞ ¼ ½ðxþ iyÞ þ ðx0 þ iy0Þ�Gðx; yÞ
¼ ½ðxþ x0Þ þ iðyþ y0Þ�Gðx; yÞ: (2)

We see that the amplitude r0 and phase /0 of the Gaussian
mode manifest itself as an offset ð�x0;�y0Þ to the vortex
mode. Since the superimposed field in Eq. (2) has real and
imaginary parts ðxþ x0ÞGðx; yÞ and ðyþ y0ÞGðx; yÞ, respec-
tively, we see that the field is displaced along the x-axis by
�x0 and along the y-axis by �y0. Where these two contours
intersect (at x ¼ �x0 and y ¼ �y0), there is a singularity—a
point of zero intensity, and hence undefined phase—about
which the phase circulates.

Figure 2 shows an optical field consisting of a Gaussian
mode and an ‘ ¼ 1 vortex mode; the white � represents the
singularity. The location of the singularity can be controlled

by moving the contours x ¼ �x0 and y ¼ �y0 (or equiva-
lently by moving the contours r¼ r0 and / ¼ /0) around in
the complex plane. Ultimately, by manipulating the ampli-
tude r0 and phase /0 between the two superimposed fields,
we can control the location of the singularity within the com-
plex plane. Sections III–V will discuss how we can experi-
mentally control the position of the singularity as well as
how we can experimentally extract the weightings between
the two fields uvortex and uGauss.

III. CREATING COMPLEX-PLANE FIELDS

Before we delve into the details of experimentally con-
structing superpositions of Gaussian and vortex modes, a
brief overview of the essential optical component, the spatial
light modulator (SLM), will be given.

A. Spatial light modulator

Most experimental optics students are aware that the
mechanism behind the functioning of SLMs is based on elec-
trically controlled birefringence. We refer those not familiar
with this concept to Refs. 36 and 37. Although SLMs offer a
plethora of applications, they are not free from efficiency
issues. One issue is that the device is unable to diffract the
entire incident field into the desired mode. This inefficiency
is illustrated in Fig. 3(a), where an azimuthally varying holo-
gram (ei3/) is illuminated with a Gaussian beam, producing a
superposition of the diffracted (‘ ¼ 3 vortex) mode and the
undiffracted (Gaussian) mode, resulting in the three single-
charged vortices moving off-axis. To remove the undif-
fracted component from the desired, diffracted component, a
blazed grating (structured to achieve maximum efficiency in
the first diffraction order) is placed over the azimuthal holo-
gram as in the case of Fig. 3(b), producing the well-known
“fork” hologram,4,5 separating the undiffracted zero-order
and the diffracted first-order into two independent lateral
positions. The function used to encode the fork hologram on
the SLM is

Fig. 1. Top row: 2D intensity profiles of (a) a Gaussian mode, (b) a vortex

mode, and (c) a coherent superposition of (a) and (b). Bottom row: the corre-

sponding cross-sectional intensity profiles (plotted across the white dotted

lines). Insets denote the corresponding phase profiles.

Fig. 2. The complex-plane representation of a superimposed Gaussian

(‘ ¼ 0) and vortex (‘ ¼ 1) mode (i.e., an off-axis vortex). The phase singu-

larity (denoted by the white �) is displaced to the location ð�x0;�y0Þ or

ðr0;/0Þ.
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‘arctan
y

x

� �
þ 1

K
mod2p; (3)

where K defines the grating spacing. The remainder of this
work will consider only the fork hologram for generating our
fields of interest. Since this article is not dedicated to the
functioning of the SLM, readers are directed to past articles
in this journal for more detailed and simplified explanations
of its capabilities.38,39

B. Experimental procedure

Methods to generate superimposed Gaussian and vortex
modes include interferometric techniques,18 where a fork
hologram is placed in one of the arms of the interferometer.
At the second beamsplitter, the beams in the two arms of the
interferometer are superposed. An even simpler technique
that we implement here requires displacing the fork holo-
gram with respect to the incident Gaussian beam,18 the con-
cept of which is illustrated in Fig. 4. Transforming an initial
Gaussian mode into a vortex mode (‘ ¼ 1) requires that the
Gaussian beam be sent through the center of the hologram
(x0 ¼ 0; y0 ¼ 0) where the singularity is located [Fig. 4(a)].
If the beam is shifted to the edge of the hologram, far away
from the singularity (x0 ! �1; y0 ! �1), the beam is
only modified by the blazed grating and the output is again
the Gaussian beam [Fig. 4(b)]. By shifting the beam slightly
off the center of the singularity in the fork hologram, the sin-
gularity in the resulting intensity profile moves off-axis [Fig.
4(c)], similar to the complex-plane representation in Fig. 2.
By controlling the horizontal (x0) and vertical (y0) displace-
ment of the singularity in the hologram (subsequently r0 and
/0), the singularity in the intensity profile can be positioned
at any point within the complex plane.

The experimental setup for generating these fields is
depicted in Fig. 5(a), where a HeNe laser illuminates the

LCD of a reflective SLM (HoloEye, PLUTO-VIS, with
1920� 1080 pixels of pitch 8 lm and calibrated for a 2p
phase shift at k � 633 nm) encoded with a fork hologram
with ‘ ¼ 1. The first diffraction order at the Fourier plane of
the lens L was imaged and magnified onto a CCD camera
with the use of the objective O.

C. Experimental results

The displaced-fork hologram in Fig. 6(a), together with
the setup shown in Fig. 5(a), was implemented to create
complex-plane fields, the results of which are shown in Fig.
6 for movement: (b) along the horizontal axis; (c) along the
vertical axis; (d) along a diagonal axis (y¼ x); and (e) around

Fig. 3. (a) The azimuthal hologram used to convert a Gaussian beam into a

superimposed vortex and Gaussian beam. (b) Overlaying the hologram in (a)

with a blazed grating produces a “fork” hologram used to produce the undif-

fracted Gaussian and diffracted vortex mode in the zero and first diffraction

orders, respectively.

Fig. 4. The concept of how the fork hologram should be illuminated with a

Gaussian beam to convert it into (a) a vortex mode, (b) a Gaussian mode, or

(c) a mixture of the two.

Fig. 5. (a) A schematic of the experimental setup used to create and investi-

gate complex-plane fields (SLM: spatial light modulator; L: lens; O: objec-

tive; CCD: CDD camera). (b) Corresponding photograph of the

experimental setup.
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in a circle. Figure 6, along with the accompanying video,
illustrate that it is possible to move the singularity to any
position within the complex plane with the aid of the
displaced-fork hologram technique.

IV. MEASURING COMPLEX-PLANE FIELDS

Now that one is able to generate fields that map out the
complex plane we will study two separate techniques for
extracting the fundamental components of these superim-
posed fields.

A. Method 1: Intensity ratios

1. Concept

It is evident in Fig. 1(f) that as the presence of the Gaussian
mode increases, the intensity peak I1 increases while I2

decreases. By determining the intensity of the field described
in Eq. (2) and solving for @I=@x ¼ 0, the positions x1 and x2

associated with I1 and I2 in Fig. 1(f) can be determined. Since
the particular case of Fig. 1(f) involves a displacement of the
singularity along the x-axis only, we can set y¼ 0 and y0 ¼ 0.
Similarly, if the displacement occurs only along the y-axis, the
positions of the intensity peaks y1 and y2 can be determined
by solving @I=@y ¼ 0, with x¼ 0 and x0 ¼ 0. The position for
each peak along the x- or y-axis can be expressed as

x1;2 ¼
�x06

ffiffiffiffiffiffiffiffiffiffiffiffi
x2

0þ 2
p
2

and y1;2 ¼
�y06

ffiffiffiffiffiffiffiffiffiffiffiffi
y2

0þ 2
p
2

; (4)

where, for simplicity, we have taken x¼ 1. (The displace-
ments of the singularity in terms of x0 and y0 are thus
denoted with respect to the beam size x.)

Substituting the positions for the two intensity peaks into
Eq. (2), the intensities I1 and I2 can then be determined. By
experimentally measuring I1 and I2, the ratio of the two modes
can be established and compared to the theoretical result

I2

I1

¼ x0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ 2
p

x0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ 2
p

 !2

e2x0

ffiffiffiffiffiffiffiffi
x2

0
þ2

p
; (5)

with a similar expression (replacing x0 by y0) holding for a
displacement in the y-direction. This approach has also been
used to analyze small misalignments of an input beam with a
very high precision.40

2. Experimental results

The ratio I2=I1 between the two peak intensities for a
range of displacements were measured and are presented in
Fig. 7(a) for a displacement of the singularity along the

x-axis and in Fig. 7(b) for a displacement along the diagonal
line y¼ x. It is evident in Fig. 7 that there is very good agree-
ment between the measured ratios and the theoretical predic-
tion given by Eq. (5). As the singularity in the fork hologram
is displaced farther from the center of the incident Gaussian
beam, the intensity ratio varies from 0 to 1, denoting the evo-
lution from a pure vortex mode into a pure Gaussian mode
with weighted superpositions in between.

B. Method 2: Modal decomposition

1. Executing an optical inner-product

Another method to demonstrate that the off-axis vortex is
a superposition of a Gaussian and an ‘ ¼ 1 vortex mode is to

Fig. 6. The intensity profiles of the complex-plane fields where (a) the singularity (marked by the white-dotted circle) in the fork hologram was displaced with

respects to the incident beam: (b) along the x-axis, (c) along the y-axis, (d) along the diagonal line y¼ x, and (e) around a circle of radius r. Displacement dis-

tances and angles are given as insets for selected examples with respect to a reference point marked by the white dotted cross-hairs (enhanced online) [URL:

http://dx.doi.org/10.1119/1.4935354.1].

Fig. 7. The ratio of peak intensities plotted against the displacement of the

singularity along (a) the x-axis and (b) the line y¼ x. Data points denote

measured ratios and dashed curves the theoretically predicted ratio.

Corresponding 2D intensity profiles of the modes at selected data points are

shown as insets.
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project the generated mode onto the orthogonal basis states.
Any optical field u can be mathematically expressed in terms
of azimuthal modes as u ¼

P
cmeim/. The weightings cm of

the modes can be extracted by performing an azimuthal
decomposition by means of an inner-product

cm ¼ huðx; yÞ; tmðx; yÞi ¼
ð ð

uðx; yÞt�mðx; yÞ dx dy (6)

and is depicted visually in Fig. 8. Here, u denotes the field of
interest as given in Eq. (2) and tm ¼ eim/ is termed the
match-filter. Experimentally, the field u of interest is directed
onto an SLM encoded with an appropriate match-filter tm.
The resultant field Uðx; yÞ ¼ uðx; yÞt�mðx; yÞ is then Fourier
transformed with a thin optical lens from the plane of the
SLM to the plane of a CCD detector, as shown in Fig. 8.
Here, in the Fourier plane, the Fourier transformation is
expressed as

U1ðkx; kyÞ ¼ F½Uðx; yÞ�

¼
ð ð

uðx; yÞt�mðx; yÞe�iðkxxþkyyÞ dx dy: (7)

The on-axis intensity at the Fourier plane provides an
experimental measurement of the optical inner-product in
Eq. (6). Setting the propagation vectors to zero (kx ¼ ky ¼ 0)
in Eq. (7), we have

Imð0; 0Þ ¼ jU1ð0; 0Þj2 ¼
����
ð ð

uðx; yÞt�mðx; yÞ dx dy

����
2

¼ c2
m: (8)

When the azimuthal mode index m of the match-filter is the
negative of one of the azimuthal modes ‘ present in the field
of interest, the weighting cm of the azimuthal mode will be

non-zero, as illustrated in Fig. 8(a). In the case where the azi-
muthal mode index m is not equal to the negative of one of
the azimuthal modes present in the field of interest, the
weighting cm is zero, as illustrated in Fig. 8(b).

2. Experimental procedure

The experimental setup to perform an optical inner-
product is depicted in the green shaded block in Fig. 9. The
field at SLM1 was relay imaged (with the use of lenses L1
and L2) onto SLM2, which was used to find the weightings
of the azimuthal modes by performing the inner-product
measurement as described in Eq. (6). An aperture in the
Fourier plane of SLM1 was used to select the first diffraction
order and block all remaining orders. The inner-product was
executed experimentally by directing the modes onto the
match-filter encoded on SLM2 and viewing the Fourier
transform (with the use of lens L3) on the CCD (Spiricon
BeamGage, SP620U). The match-filter consists of an azimu-
thally varying phase eim/, and by adjusting this phase the
various azimuthal weightings in the optical modes can be
measured.

3. Experimental results

The weightings of the Gaussian (‘ ¼ 0) and vortex mode
(‘ ¼ 1) for a range of displacements were measured and are
presented in Fig. 10 for (a) a displacement of the singularity
along the x-axis, and (b) a displacement along the y-axis. It
is evident in Fig. 10 that as the singularity in the fork holo-
gram is displaced farther from the center of the incident
Gaussian beam, the weighting between the two modes
(‘ ¼ 0 and ‘ ¼ 1) varies from 0 to 1, denoting the evolution
from a pure vortex mode to a pure Gaussian mode with
weighted superpositions in between.

V. APPLICATION: EFFICIENCY CALCULATION

In this section, we will demonstrate with a simple example
that the technique of measuring two adjacent intensity peaks as
described above can be used as a direct measurement of the
diffraction efficiency of an SLM. Let us consider the example
given in Fig. 3(a) where an azimuthally varying hologram
(ei3/) possessing no blazed grating is illuminated with a
Gaussian beam, producing an on-axis superposition of the
unaltered zero order and first order containing the encoded

Fig. 8. Schematic of the optical inner-product measurement. (a) Here, the

azimuthal mode index (m¼�1) of the match-filter tm is the negative of the

azimuthal mode (‘ ¼ 1) present in the field of interest. The result is a non-

zero inner-product, denoted by the bright Gaussian spot. (b) Here, the azi-

muthal mode index (m¼ 0) is not the negative of the azimuthal mode

(‘ ¼ 1) present in the field of interest, resulting in a null for the inner-

product, denoted by the on-axis singularity.

Fig. 9. Schematic of the experimental setup used to create and decompose

(denoted by the green shaded block) complex-plane fields (SLM: spatial

light modulator; L: lens; A: aperture; CCD: CDD camera). The correspond-

ing holograms for the 2 SLMs (each the complex conjugate of the other, for

this particular measurement) and the corresponding 2D intensity profiles at

various planes in the setup are shown as insets.
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phase profile. The 2D intensity profile of the superimposed
mode shown in Fig. 3(a) is depicted in more detail in the com-
plex plane in Fig. 11(a). Here, it is evident that superimposing
the vortex (‘ ¼ 3) mode with the Gaussian mode results in the
phase singularities of unit charge (‘ ¼ 1) being displaced to
locations such that x0 6¼ 0 and y0 6¼ 0. To extract the weight-
ings between the two superimposed modes, we first plot its
cross-sectional intensity profile [Fig. 11(b)] across one of
the peaks and its adjacent null [along the black dotted line in
Fig. 11(a)]. By extracting the intensities of the two peaks I1

and I2 and making use of Eq. (5), we can directly determine
the ratio between the Gaussian and vortex modes. For this par-
ticular example, the superimposed mode in Fig. 11(a) consists
of 30% Gaussian and 70% vortex. This is illustrated visually
in Fig. 11(c) where the two modes have been spatially sepa-
rated (with the use of a blazed grating) with the Gaussian
mode depicted in the zero order (possessing 30% of the

energy) and the vortex mode in the first order (possessing the
remaining 70%). Although only 70% of the light is projected
into the first diffraction order, closer inspection of this mode,
shown in Fig. 11(d), illustrates that it is a pure vortex mode,
i.e., consisting of 100% vortex mode and 0% Gaussian mode.
We can therefore conclude that the SLM used in this example
has a diffraction efficiency of 70%. (Please note that we engi-
neered this example to have a poor diffraction efficiency of
70% for illustrative purposes, but in fact most SLMs offer dif-
fraction efficiencies >80%.)

VI. CONCLUSION

In this paper, we have described how one can create an op-
tical field whose position in the complex plane can be con-
trolled with the use of simple digital holograms encoded on a
SLM. Most optics labs are equipped with at least one SLM,
and so undergraduate and graduate students can get hands-on
experience as to how a simple tool can be used to control an
optical field’s position in the complex plane. Such an experi-
ment will also help students in understanding the fundamental
components of an optical field—its amplitude and phase—and
how these components manifest in an intensity distribution.

We also show how these fields can subsequently be broken
down into their fundamental (Gaussian or vortex) compo-
nents by either measuring the ratio of the peak intensities at
two adjacent points in the field or performing a simple modal
decomposition. This form of analysis, particularly in the case
of the modal decomposition, provides students with a simple
tool to study the constituent components of optical fields. For
example, when propagating an optical field through an envi-
ronment of interest (e.g., a fibre, turbulent atmosphere, etc.),
the modal decomposition can be used to decompose the
emerging field, thus providing information on the action of
the environment (i.e., how it transforms the propagating
field). Possessing the tools to create and measure complex op-
tical fields has many applications in research fields including
laser beam shaping, quantum optics, and optical tweezing.
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Fig. 10. The weighting of the two azimuthal modes plotted against the dis-

placement of the singularity along (a) the x-axis and (b) the y-axis.

Fig. 11. (a) A 2D intensity profile of a superimposed Gaussian and a vortex mode of ‘ ¼ 3. Note the displacement of the 3 singularities to off-axis locations in

the complex plane. (b) The cross-sectional intensity profile of the mode in (a) plotted along the black dotted line. The intensities I1 and I2 give a direct ratio

between the two modes (Gaussian: zero diffraction order; vortex: first diffraction order), which provides a direct measurement of the diffraction efficiency. (c)

A 2D intensity profile of the separated Gaussian and vortex modes with their corresponding energy in each diffraction order. (d) An enlarged image of the first

diffraction order in (c) represented in the complex plane illustrating that the mode is a pure (100%) vortex mode (‘ ¼ 3) with a phase singularity located at the

origin (x ¼ 0; y ¼ 0).

111 Am. J. Phys., Vol. 84, No. 2, February 2016 Dudley et al. 111



1L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman,

“Orbital angular momentum of light and the transformation of Laguerre-

Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
2M. W. Beijersbergen, L. Allen, H. E. L. O. Van der Veen, and J. P.

Woerdman, “Astigmatic laser mode converters and the transfer of orbital

angular momentum,” Opt. Commun. 96, 123–132 (1993).
3M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P.

Woerdman, “Helical-wave-front laser-beams produced with a spiral

phaseplate,” Opt. Commun. 112, 321–327 (1993).
4V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with

screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
5N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation

of optical phase singularities by computer-generated holograms,” Opt.

Lett. 17, 221–223 (1992).
6M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical parti-

cle trapping with computer-generated holograms written on a liquid crystal

display,” Opt. Lett. 24, 608–610 (1999).
7J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical

tweezers,” Opt. Commun. 207, 169–175 (2002).
8S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-

demand laser modes,” Nat. Commun. 4, 2289-1–2289-6 (2013).
9M. Z€urch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann,

“Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746

(2012).
10H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop,

“Direct observation of transfer of angular momentum to absorptive par-

ticles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75,

826–829 (1995).
11E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced

rotation of anisotropic micro-objects fabricated by surface micromaching,”

App. Phys. Lett. 64, 2209–2210 (1994).
12P. Galajda and P. Ormosa, “Complex micromachines produced and driven

by light,” App. Phys. Lett. 78, 249–251 (2001).
13G. Kn€oner, S. Parkin, V. L. Y. Nieminen, T. A. Love, N. R. Heckenberg,

and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,”

Opt. Express 15, 5521–5530 (2007).
14K. Willig, S. Rizzoli, V. Westphal, R. Jahn, and S. Hell, “STED micros-

copy reveals that synaptotagmin remains clustered after synaptic vesicle

exocytosis,” Nature 440, 935–939 (2006).
15G. Gariepy, J. Leach, K. Kim, T. Hammond, E. Frumker, R. Boyd, and P.

Corkum, “Creating high-harmonic beams with controlled orbital angular

momentum,” Phys. Rev Lett. 113, 153901 (2014).
16C. Hern�andez-Garc�ıa, A. Pic�on, J. San Rom�an, and L. Plaja, “Attosecond

extreme ultraviolet vortices from high-order harmonic generation,” Phys.

Rev Lett. 111, 083602 (2013).
17A. Mair, A. Vasiri, G. Weihs, and A. Zeilinger, “Entanglement of the or-

bital angular momentum states of photons,” Nature 412, 313–316 (2001).
18A. Vasiri, G. Weihs, and A. Zeilinger, “Superpositions of the orbital angu-

lar momentum for applications in quantum experiments,” J. Opt. B:

Quantum Semiclassical Opt. 4, S47–S51 (2002).
19B. Jack, J. Leach, H. Ritsch, S. M. Barnett, M. J. Padgett, and S. Franke-

Arnold, “Precise quantum tomography of photon pairs with entangled or-

bital angular momentum,” New J. Phys. 11, 103024 (2009).
20M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-

healing of quantum entanglement after an obstruction,” Nat. Commun. 5,

3248-1–3248-8 (2013).
21G. Gibson, J. Courtial, M. Vasnetsov, M. J. Padgett, V. Pasko, S. M.

Barnett, and S. Franke-Arnold, “Free-space information transfer using

light beams carrying orbital angular momentum,” Opt. Express 12,

5448–5456 (2004).

22J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y.

Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data trans-

mission employing orbital angular momentum multiplexing,” Nature

Photon. 6, 488–496 (2012).
23M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia,

“Simultaneous determination of the constituent azimuthal and radial mode

indices for light fields possessing orbital angular momentum,” Appl. Phys.

Lett. 100, 231115 (2012).
24J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Ch�avez-Cerda,

“Unveiling a truncated optical lattice associated with a triangular aperture

using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904

(2010).
25A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M. Wright,

“Visualization of the birth of an optical vortex using diffraction from a tri-

angular aperture,” Opt. Express 19, 5760–5771 (2011).
26J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial,

“Measuring the orbital angular momentum of a single photon,” Phys. Rev.

Lett. 88, 257901 (2002).
27M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett,

“Robust interferometer for the routing of light beams carrying orbital

angular momentum,” New J. Phys. 13, 093014 (2011).
28G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and

M. J. Padgett, “Efficient sorting of orbital angular momentum states of

light,” Phys. Rev. Lett. 105, 153601 (2010).
29M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J.

Padgett, and J. Courtial, “Refractive elements for the measurement of the

orbital angular momentum of a single photon,” Opt. Express 20,

2110–2115 (2012).
30A. Dudley, T. Mhlanga, M. Lavery, A. McDonald, F. S. Roux, M. J.

Padgett, and A. Forbes, “Efficient sorting of Bessel beams,” Opt. Express

21, 165–171 (2013).
31M. P. J. Lavery, D. J. Robertson, A. Sponselli, J. Courtial, N. K.

Steinhoff, G. A. Tyler, A. Wilner, and M. J. Padgett, “Efficient measure-

ment of orbital angular momentum over 50 states,” New J. Phys. 15,

013024 (2013).
32A. Dudley, G. Milione, R. R. Alfano, and A. Forbes, “All-digital wave-

front sensing for structured light beams,” Opt. Express 22, 14031–14040

(2014).
33D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparr�e, “Mode

analysis with a spatial light modulator as a correlation filter,” Opt. Lett.

37, 2478–2480 (2012).
34T. Kaiser, D. Flamm, S. Schr€oter, and M. Duparr�e, “Complete modal

decomposition for optical fibers using cgh-based correlation filters,” Opt.

Express 17, 9347–9356 (2009).
35I. A. Litvin, A. Dudley, F. S. Roux, and A. Forbes, “Azimuthal decomposi-

tion with digital holograms,” Opt. Express 20, 10996–11004 (2012).
36D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A

low-cost spatial light modulator for use in undergraduate and graduate

optics labs,” Am. J. Phys. 80, 211–215 (2012).
37J. Davis and I. Moreno, “Generation of laser beams by digital holograms,”

in Laser Beam Propagation, edited by A. Forbes (CRC Press, New York,

2014), p. 175.
38A. Carpentier, H. Michinel, and J. Saigueiro, “Making optical vortices

with computer-generated holograms,” Am. J. Phys. 76, 916–921

(2008).
39B. R. Boruah, “Dynamic manipulation of a laser beam using a liquid crys-

tal spatial light modulator,” Am. J. Phys. 77, 331–336 (2009).
40G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to mea-

sure off-axis displacements based on the analysis of the intensity distribu-

tion of a vortex beam,” Phys. Rev. A 79, 033845 (2009).

112 Am. J. Phys., Vol. 84, No. 2, February 2016 Dudley et al. 112

http://dx.doi.org/10.1103/PhysRevA.45.8185
http://dx.doi.org/10.1016/0030-4018(93)90535-D
http://dx.doi.org/10.1016/0030-4018(94)90638-6
http://dx.doi.org/10.1364/OL.17.000221
http://dx.doi.org/10.1364/OL.17.000221
http://dx.doi.org/10.1364/OL.24.000608
http://dx.doi.org/10.1016/S0030-4018(02)01524-9
http://dx.doi.org/10.1038/ncomms3289
http://dx.doi.org/10.1038/nphys2397
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://dx.doi.org/10.1063/1.111675
http://dx.doi.org/10.1063/1.1339258
http://dx.doi.org/10.1364/OE.15.005521
http://dx.doi.org/10.1038/nature04592
http://dx.doi.org/10.1103/PhysRevLett.113.153901
http://dx.doi.org/10.1103/PhysRevLett.111.083602
http://dx.doi.org/10.1103/PhysRevLett.111.083602
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1088/1464-4266/4/2/367
http://dx.doi.org/10.1088/1464-4266/4/2/367
http://dx.doi.org/10.1088/1367-2630/11/10/103024
http://dx.doi.org/10.1038/ncomms4248
http://dx.doi.org/10.1364/OPEX.12.005448
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1063/1.4728111
http://dx.doi.org/10.1063/1.4728111
http://dx.doi.org/10.1103/PhysRevLett.105.053904
http://dx.doi.org/10.1364/OE.19.005760
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1103/PhysRevLett.88.257901
http://dx.doi.org/10.1088/1367-2630/13/9/093014
http://dx.doi.org/10.1103/PhysRevLett.105.153601
http://dx.doi.org/10.1364/OE.20.002110
http://dx.doi.org/10.1364/OE.21.000165
http://dx.doi.org/10.1088/1367-2630/15/1/013024
http://dx.doi.org/10.1364/OE.22.014031
http://dx.doi.org/10.1364/OL.37.002478
http://dx.doi.org/10.1364/OE.17.009347
http://dx.doi.org/10.1364/OE.17.009347
http://dx.doi.org/10.1364/OE.20.010996
http://dx.doi.org/10.1119/1.3666834
http://dx.doi.org/10.1119/1.2955792
http://dx.doi.org/10.1119/1.3054349
http://dx.doi.org/10.1103/PhysRevA.79.033845

	s1
	s2
	d1
	d2
	s3
	s3A
	d3
	f1
	f2
	s3B
	s3C
	f3
	f4
	f5
	s4
	s4A
	s4A1
	d4
	d5
	s4A2
	s4B
	s4B1
	f6
	f7
	d6
	d7
	d8
	s4B2
	s4B3
	s5
	f8
	f9
	s6
	f10
	f11
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40

