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Abstract— We experiment with a new method to create
synthetic models of rare and unseen triphones in order to sup-
plement limited automatic speech recognition (ASR) training
data. A trajectory model is used to characterise seen transitions
at the spectral level, and these models are then used to create
features for unseen or rare triphones. We find that a fairly
restricted model (piece-wise linear with three line segments per
channel of a diphone transition) is able to represent training
data quite accurately. We report on initial results when creating
additional triphones for a single-speaker data set, finding small
but significant gains, especially when adding additional samples
of rare (rather than unseen) triphones.
Index Terms: synthetic triphones, trajectory modelling,

trajectory-based features, feature distributions, feature con-

struction

I. INTRODUCTION

The accurate modelling of co-articulation effects in auto-

matic speech recognition (ASR) systems has been a driving

force behind the development of large speech corpora [1].

Whole word (or even phrasal) units capture co-articulation

effects accurately within unit but require very large training

corpora; limited training data forces the use of smaller units,

and has resulted in the widespread use of context-dependent

phones to capture co-articulation effects [1].

In practice, context sizes of three (triphones) or five

(quinphones) are often used. When data is limited, many

of these context-dependent units will rarely or ever be

seen during training. In typical ASR systems, such unseen

context-dependent units are modelled by clustering them

with ‘matching’ seen units, based on a combination of acous-

tic and linguistic analysis, which is not always an optimal

solution [2]. We are interested in determining whether it is

possible to generate synthetic versions of such unseen or rare

contexts from less specialised units observed in the training

data.

First, we require a model that links more general units to

more specialised units. For this purpose, we use a trajectory

model that provides a compact way of representing the char-

acteristic behaviour of transitions. From the characteristic

trajectory behaviour of the less specialised transitions we

reconstruct models for unseen transitions. In the current

study, we restrict ourselves to triphone modelling, and aim

to generate synthetic triphones from seen diphones. If this is

possible, the same approach should be applicable to larger

contexts, and possibly also to synthesizing additional speech

data based on a small sample of data from a given speaker.

II. BACKGROUND

In recent work, there has been renewed interest in data

augmentation approaches for improving recognition accuracy

for under-resourced languages. A useful way to group data

augmentation schemes is to consider what type of additional

data a technique produces. In [3], the three data types are

referred to as ‘other language’, ‘unsupervised’ and ‘syn-

thesised’ data. To incorporate other language data, systems

utilise multilingual acoustic models trained on universal

phone sets [4] exploiting resources across language barriers.

Bootstrapping and filtering out the poor quality data is

helpful (unsupervised techniques), while synthetic data may

refer to perturbed data or entirely new examples of contexts

which have been artificially generated. These techniques can

potentially also generate vast amounts of data.

The work of both Jaitly and Hinton [5] and Kanda et
al. [6] have shown that modelling accuracy can be improved

by augmenting limited training data with synthetic training

samples. For both cases, a modified version of the training

data is added to the original data set when training hidden

Markov models with deep neural networks. In the first case,

vocal tract length normalisation (VTLN) is applied with

different warping factors (the features are adjusted, labels

kept unchanged) and in the second, different VTLN warping

factors, different speech rates and frequency distortions are

applied in a similar fashion.

Using trajectory models for the same goal, builds on prior

work analysing co-articulation trajectories [7], [8], [9] as

well as various studies on trajectory modelling for ASR

purposes [10], [11], [12], [13]. Particularly, in [8] it was

found that some decision-tree clustered triphones provided

less accurate representations than a simple biphone model,

providing the motivation for the current study.

As trajectory models, in effect, smooth features at frame

level, they are related to the low-pass filtering used in noise

robust speech recognition. The end goal of noise robust

approaches is to systematically ‘recover’ corrupted speech

frames. In principle, if the reliable features can be identified,

these can then in turn be used to make more accurate

predictions about less reliable ones. To this end, Chen and

Bilmes [14] use Auto-Regressive Moving Average (ARMA)

filtering at the cepstral level to improve ASR robustness in

noisy conditions. If over-smoothing occurs, the more definite

boundaries of speech events can be modelled using edge-
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Fig. 1. Characteristic representation of a single transition (3-piece linear
model).

preserved filtering [15]. Xiao and Li [16] show that besides

normalising the probability distributions of speech features,

the temporal characteristics of the feature trajectories can

also be enhanced at the spectral level. In this work, we apply

ARMA filtering at the spectral level, as a preprocessing step

prior to fitting trajectories.

III. APPROACH

Generating synthetic triphones consists of four main steps:

(1) fitting a trajectory model to seen transitions, (2) estimat-

ing trajectory parameters based on these seen transitions, (3)

creating artificial utterances based on the estimated trajectory

parameters, and (4) constructing trajectory-based features for

model training.

A. Diphone segment-based trajectory model

We model the transitions that occur in speech with piece-

wise linear approximation at the spectral level. Three line

pieces are used to fit a single feature channel of a filterbank,

using least-squares optimisation. Figure 1 depicts this mod-

elling strategy. A segment effectively describes a diphone,

only using the closest 50% of monophone frames to the

ASR boundary. We restrict the start and end line segments

to be constant values (linear with zero slope), and model the

transition between these two values with a straight line of

variable slope. We require the constant line segments (the

start and end line pieces, referred to as stable values) to be

associated with at least 1 frame each. The connecting central

line segment is referred to as the change descriptor.

Each stable value is estimated as the mean of associated

feature values; the change descriptor is modelled by the

first order line connecting the stable value anchor points.

We optimise the squared error (SE) across all three line

segments simultaneously by searching through the indexes

of the possible start and end points for the change descriptor

and draw the first order line between the end and starting

indexes of the two anchor points. The squared errors at each

instant are estimated, followed by the channel-specific mean

square error across frames:

MSEchannel(c) =
1

F

F∑

f=1

|tc(f)− xc,f |2 (1)

where tc(f) is the value of the trajectory function and xc,f

the true feature value, respectively, at frame f and feature

channel c, and |tc(f) − xc,f |2 is the squared residual. F
denotes the total number of frames for the segment. Once

optimised, this model provides the following scalar values

(see Figure 1):

S1, S2 parameter value at initial and final stable value

T1, T2 frame at start and end of the transition

Tmid centre of the transition

Tdur difference between T2 and T1 (2)

A similar SE measurement is also used to evaluate the

extent to which trajectory models fit a set of speech data:

the mean error (over all frames of all transitions) is now

taken across all channels as well. Since channels have quite

different standard deviations (σc), a variance-weighted MSE

(MSEweighted) is useful to evaluate:

MSEweighted =
1

C

C∑

c=1

1

σ2
c

MSEchannel(c) (3)

with C the total number of feature channels.

B. Predicting trajectory-based parameters

Given a set of training data, any group of segments can

be modelled by a probability density function (pdf) over the

parameters of section III-A. In this work, we choose to make

the assumption that each parameter is normally distributed.

The following section now describes how we use pdfs of the

segment-based trajectory parameters to model speech data.

1) Estimating parameter distributions: Once an initial

set of trajectories has been fitted to the training data, the

mean and full-covariance matrix is estimated for the stable

values (S1 and S2 respectively) of every particular biphone

context that is required. Although biphone contexts are better

resourced than triphone contexts, it is still not guaranteed

that all biphones will have been seen. To supplement the

under-estimated variances of these biphone values, we share

the monophone diagonal variances for each distribution

estimated on less than a fixed number of examples (3 in

the current work).

Time alignments are modelled in a similar manner. Refer-

ring back to the schematic representation in Figure 1, these

parameters are captured in two pdfs: (1) Tdur and (2) Tmid.

A diphone context size is used.

2) Creating synthetic phones: As described above, we

represent speech data at the spectral level with a set of four

full-covariate pdfs (representing S1, S2, Tmid and Tdur) per

modelled context (currently diphones) and filterbank channel.

For every triphone synthesised, the two diphones are created

individually, by sampling from these four pdfs. Analytic
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Fig. 2. Constructing a triphone model from two separate diphone transition
segments.

constraints (segstart < T1 < T2 < segend) prevent invalid

samples from being generated.

These synthetic diphones form the building blocks for

generating artificial ASR data. Construction of a complete

triphone example is now simply a matter of concatenating

two appropriate diphone segments for a required context,

as illustrated in Figure 2. Every triphone model requires

shared stable values between the channel-based piece-wise

linear models of two segments. We use the implementation

described in [9] for this process, and form trajectories for

complete utterances from the small diphone segments.

C. Augmenting train data triphone classes

Additional triphone examples can now be added to the

training data by generating fully artificial utterances. As it

is not possible to simply stitch the required triphone labels

together to form an utterance directly, we define an additional

‘garbage’ phone that can be added whenever subsequent tri-

phone labels do not match. Each garbage model is generated

from the preceding and following diphone segment pdfs, and

is discarded after training, prior to decoding.

D. Trajectory-based feature construction

In order to generate features from trajectory models, we

extend the standard Mel-frequency cepstrum coeffiecient

(MFCC) feature description: similar to generating standard

MFCCs, the first step is to perform a fast Fourier transform

(FFT) and obtain raw filterbank outputs. We use the Hidden

Markov Model Toolkit (HTK) [17] and fairly standard pa-

rameters (sampling the speech signal at a frame rate of 5ms

with a set of 26 filters).

Three additional steps are required before trajectories can

be estimated: the log operation, mean subtraction for every

channel and ARMA filtering [14]. Trajectories are only

extracted for training data. (For the test data, we rely on

ARMA filtering alone to smooth features. Alternatively, two

pass-recognition can be used to obtain test trajectories and

possibly further improve recognition accuracy; this is not

evaluated as part of the current study.)

Sampling the trajectory models estimated at this point gen-

erates a new set of frame-based features with a standard 10ms

frame rate. We apply the discrete cosine transform (DCT)

with a cepstral liftering coefficient of 22 (as implemented

in HTK). This provides 13 cepstral features, for which

the standard first and second order derivatives are taken.

Lastly, cepstral mean and variance normalisation (CMVN)

are applied to the complete data set.

IV. EXPERIMENTAL SETUP

All experiments use a single-speaker corpus, specifically

designed for trajectory modelling: the Afrikaans Trajectory

Tracking corpus (ATT) [9]. In the next section (Section V),

we first show that the trajectory models approximate the

training data fairly accurately. We then analyse the mismatch

between triphones in the training and test sets and experiment

with different ways of creating synthetic triphones, paying

specific attention to the difference between reconstructed

triphones (not seen at all in the training data) and rarely

seen triphones.

A. Speech data

The ATT corpus [9] consists of about 6 000 short ut-

terances of a single male speaker, with a 4 974 subset

considered of good audio and transcription quality. From

this ‘clean’ data set, training and test data sets were selected

of 4 072 and 902 utterances respectively, as described in

[9]. As this data set is still quite large, we select a random

subset of 961 utterances (less than 40 minutes of speech) to

construct the under-resourced training data set. A further 440
utterances were selected (also randomly), as a development

set.

B. Segmentation and test system parameters

To segment the training data for trajectory modelling, we

use a standard HMM-based ASR system trained on all 4 974
utterances and perform automatic alignment of the training

data. (These alignments are not used during testing.)

In all experiments to follow, similar systems are trained:

a context-dependent cross-word phone recogniser with tied

triphone models and 39 cepstral trajectory features (the

first 13 features as defined in Section III-D, and their first

and second order derivatives). These features are computed

with a window size of 25ms and at a frame rate of 10ms.

Tied triphone models are estimated using standard phonetic

decision-tree clustering. Each triphone model has 3 emitting

states with 7 Gaussian mixtures per state and a diagonal

covariance matrix; semitied transforms are applied. Only

insertion penalties are optimised during decoding: for all

experiments this is done using the development set, with

results reported on the test set.

V. EXPERIMENTS AND RESULTS

A. Accurate trajectory-based representation

Nr Feature type Channels MSE ρ

1 Cepstral 13 0.1836 0.9133
2 Spectral 26 0.0633 0.9672
3 Spectral (ARMA 6) 26 0.0177 0.9834

TABLE I

Measuring approximation efficiency of trajectories with weighted MSE

and correlation measurements.
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Fig. 3. Number of triphone examples in train data (3754 triphone labels
in total).

First, we evaluate the ‘goodness of approximation’ of the

trajectory models by measuring the variance-weighted MSE

between the original feature frames and the corresponding

model values (using eq. 3). These values are shown in Table

I for three different sets of features, evaluated on the test

data set. We also calculate the Pearson correlation coefficient

(ρ) between trajectory estimates and actual feature values.

From Table I it is clear that the two measures correlate well,

that the ARMA-filtered spectral trajectories provide the best

fit, and that a low MSE value (0.0177) and high correlation

coefficient (0.9834) are obtained this way. The rest of the

experiments only use ARMA-filtered spectral trajectories.

B. Triphone coverage

In Table II and Figure 3 the triphone coverage of the

training data is given. 3 754 unique triphones are observed.

On average, each is observed 5 times, with only about a 1
4

of labels occurring more than 5 times. Good overlap (2 608
labels) exists between the training and test data sets. Of

the 1 045 labels not seen in the training set, 929 can be

reconstructed from diphones (that is, both required diphones

are observed in the training data).

Category Triphone count
Train data 3 754
Test data 3 653

Test data seen 2 608
Test data unseen 1 045

Test data unseen: Diphone constructable 929
Test data unseen: Not constructable from diphones 116

TABLE II

Triphone overlap between test and train data sets and that the number

re-created from diphone transitions.

Figure 3 clearly shows how rarely seen triphones can also

be exploited. We experiment with four pools of these labels:

(1) < 2 examples with 692 labels, (2) < 3 examples - 1127
labels, (3) < 5 examples - 1616 and (4) < 10 examples

where 2189 labels form part of the rare category.

C. Baseline

Evaluating the phone recognition accuracy of the test data,

leads to the baseline result (‘Control’) in Table III. Phone

accuracies are reported for systems with and without semitied

transforms.

System #Cons #Rare ACC ACC (semitied)
Control - - 78.31 78.65
Reconstruct 1 1 - 78.66 79.54
Reconstruct 2 2 - 79.33 79.87
Reconstruct 3 3 - 78.76 79.40
Reconstruct 4 5 - 78.26 79.16
Reconstruct 5 10 - 76.54 79.08
Rare 1 - 2 79.26 79.70
Rare 2 - 3 79.95 80.04
Rare 3 - 5 79.56 80.39
Rare 4 - 10 77.34 79.31
Combined 1 2 2 78.47 80.55
Combined 2 1 3 79.48 80.82
Combined 3 2 3 79.46 79.99
Combined 4 3 3 79.39 80.40
Combined 5 3 5 78.89 80.30
Combined 6 5 5 78.53 79.54
Combined 7 10 10 75.96 78.33

TABLE III

Phone recognition results when adding synthetic triphone examples to rare

and unseen triphones in the training data.

D. Reconstructed triphones

We experiment with five acoustic models (Reconstruct 1 -

5), reconstructing unseen triphones; these only differ with

regard to the number (#Cons) of reconstructed synthetic

triphone examples generated per label (Table III). From

these results, adding unseen triphones to the training data

does improve phone recognition accuracy. Interestingly, only

adding a few samples works well: adding too many examples

(5 or 10) does not provide better accuracy.

E. Rare triphones

Since at least one example of real training data is seen for

the triphone identities in the rare triphone category, a smaller

number of rarely seen triphone examples needs to be added to

achieve the same set number of examples per triphone label.

The results in Table III prove that the seen examples are

not adequate: system accuracy improves significantly when

adding synthetic triphone examples.

For the next four acoustic models, we steadily increase the

number of synthetic triphones in the rare triphone category.

In the Rare 1 experiment, at least 2 examples of all triphones

are included (after additional triphones have been generated).

Similarly, for systems Rare 2-4, at least 3, 5 and 10 examples

are included in the training data. (See Table II for the number

of triphones in each class.)

Again, adding 10 examples does not provide the best

improvement (79.31%). The Rare 3 model provides a better

result than that obtained for unseen triphones (Reconstruct 2

model).

F. Under-resourced triphones

Given the results above, the next question is whether

generating synthetic triphone examples for both the rarely

seen and unseen triphone categories would contribute to
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gains in phone recognition accuracy. In an attempt to do

so, we combine the synthetic triphone example sets.

Forcing 10 triphone examples remains too many. The

accuracy of 78.33% that the Combined 7 system achieves

(Table III) show no gain over the baseline. Lowering the

number of synthetic triphone examples to 5, significantly

improves accuracy, but still does not outperform the previous

Rare triphone experiments. In fact, the Combined 4 system

results match these, but now for the system where we force a

number of 3 examples of the under-resourced triphone label

classes.

Since the reconstructed and rare triphone categories be-

have differently, as a last refinement, we also test what

happens when different numbers of examples are added from

each triphone class. We obtain the best results when a single

triphone example is added for each of the 926 labels of

the unseen category and at least 3 seen examples for the

1 127 labels of the rare category is forced. These results

are tuned to the specific data set considered here: we do

not propose it as a general strategy for adding synthetic

triphones. Rather, we find it interesting that recognition

accuracy can be improved using a fairly crude strategy for

generating synthetic triphones.

VI. DISCUSSION

When developing ASR systems in resource-constrained

environments, many triphones are never seen during training.

We found that it is possible to reconstruct unseen triphones

from smaller contextual units, and that this can improve

recognition accuracy of a standard tied-state baseline ASR

system. Although speech synthesis techniques could also be

used to generate unseen triphone units, we found that the

trajectory models we use are able to represent training data

surprisingly well. Our technique leads to a natural process for

creating artificial utterances, containing repeated sequences

of synthetically created samples of both unseen and rare

triphones. Randomly selecting the training data set from

the phonetically balanced ATT corpus [9], we can expect

the distributions of unseen and rare triphones to remain

comparable for new speakers of the same language.

With the current approach, the number of samples that

can be added is still quite limited. Further refinements to

the model are foreseen, especially with regard to the current

sampling process, which is fairly crude. Trajectory optimi-

sation and exploring the relationship of the new trajectories

and the MSE or correlation measures in Table I may lead to

improved results. Similarly, we report on improved results

for semitied transforms, but the effect using training features

with a high degree of feature smoothness on this technique

remains to be investigated.

Our goal is to first analyse and understand the current

restricted environment (a single speaker, generating triphones

from diphones) in more depth, before considering the extent

to which the current approach can generalise to larger

contexts (quinphones from triphones) and finally, cross-

speaker data augmentation. This is aligned with recent data

augmentation approaches that have begun to address the
cross-speaker problem. For example, [18] attempts to find

a stochastic feature mapping (SFM) to statistically convert

features between two speakers. The extent to which these

approaches (generating additional synthetic contexts for a

single speaker, and generating additional synthetic speakers)

are complementary, remains an open question.
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