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Abstract— Recently, multilingual deep neural networks
(DNNs) have been successfully used to improve under-resourced
speech recognizers. Common approaches use either a merged
universal phoneme set based on the International Phonetic
Alphabet (IPA) or a language specific phoneme set to train
a multilingual DNN. In this paper, we investigate the effect of
both knowledge-based and data-driven phoneme mapping on
the multilingual DNN and its application to an under-resourced
language. For the data-driven phoneme mapping we propose to
use an approximation of Kullback Leibler Divergence (KLD)
to generate a confusion matrix and find the best matching
phonemes of the target language for each individual phoneme
in the donor language. Moreover, we explore the use of recently
proposed generalized maxout network in both multilingual
and low resource monolingual scenarios. We evaluate the
proposed phoneme mappings on a phoneme recognition task
with both HMM/GMM and DNN systems with generalized
maxout architecture where Flemish and Afrikaans are used
as donor and under-resourced target languages respectively.

Index Terms— Low resource ASR, phoneme mapping, Kull-
back Leibler Divergence, multilingual deep neural network.

I. INTRODUCTION

Exploiting out-of-language data to develop high perfor-

mance speech processing systems for low-resource languages

has been extensively used recently [1][2]. However, sharing

the knowledge across various languages is not a straight-

forward task because of differences such as different sets

of subword units. In the literature, a common approach

towards this is the creation of a universal phoneme set

by first pooling the phoneme sets of different languages

together and then merging them based on their similarity

in both knowledge-based and data-driven fashions [3][4].

Knowledge-based phoneme mapping needs prior expert-

knowledge of a phonetician and is an appropriate approach

when we have no data for the target language. In practice,

however, we usually have at least a few hours of data.

To benefit from the available data, data-driven phoneme

mapping can be used instead [5][6].

In the realm of multilingual neural networks [7], creat-

ing the target phoneme set for the multilingual training is

commonly done (a) by joining of language-specific phoneme

sets, (b) training neural networks where each language has

its own output layer or (c) by mapping to a global phoneme

*This work is based on research supported by the South African National
Research Foundation as well as the fund for scientific research of Flanders
(FWO) under project AMODA GA122.10N.

1Faculty of Electrical Engineering, KULeuven , 3001 Leuven,
Belgium. Reza.Sahraeian@esat.kuleuven.be,
Dirk.VanCompernolle@esat.kuleuven.be.

2HLT Research Group Meraka Institute, CSIR, South Africa.
fdwet@csir.co.za

set. The first two approaches have been successfully used

when sufficient amount of training data for each language

is available [8][9]. In the case of limited training data,

however, using information from high resource language(s)

by merging phoneme sets may be beneficial [10]. While the

common approach for multilingual DNN training is that each

language has its own output layer, our goal is to investigate

if better performance can be gained by knowledge-based and

data-driven phoneme mapping and which one performs best.

This is a tricky issue as it depends on the languages. For

example, if two languages are closely-related, IPA based

mapping may work sufficiently well. Thus, in this paper,

we conduct a case study for two related languages: Flemish

and Afrikaans [12].

The data-driven approach we used is based on learning a

phoneme mapping table by calculating KLD between pairs

of phonemes in Flemish and Afrikaans. It is worth noting that

similar works exist where a data-driven phoneme mapping is

addressed by making the confusion matrix using multilingual

neural networks [13][11]. However, the reported performance

mostly degrades compared to the knowledge-based method.

Moreover, there are two aspects in which this paper differs

from [13]. First, the latter dealt with languages with moderate

amounts of data and therefore DNN training where each

language has its own output layer yields the best results;

whereas, we deal with the resource-scarce target language

and phoneme mapping is beneficial. Moreover, our approach

is more flexible as we may assign more than one phoneme

from Afrikaans to each phoneme of Flemish based on the

confusion scores.

In addition, deep maxout networks have achieved improve-

ments in various aspects of acoustic modelling for large

vocabulary speech recognition systems including under-

resourced and multilingual scenarios [14][15]. In this paper,

we investigate the performance of state-of-the-art deep gen-

eralized maxout networks, [16], in the context of multilingual

and under-resourced monolingual speech recognition.

This paper is organized as follows: in section II we

describe deep generalized maxout network training. Then,

the phoneme mapping issues for multilingual DNN and

both the knowledge-based and data-driven approaches are

explained in section III. The databases and the experiments

are presented in section IV and V. Finally we present

concluding remarks.

II. DEEP GENERALIZED MAXOUT NETWORKS

A deep maxout neural network is simply a multilayer

perceptron with many hidden layers before the softmax
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output layer and uses the maxout function to generate hidden

activations [17]. Suppose u(l) = [u(l)1 ,u(l)2 , ...,u(l)I ] is a set of

activations in layer l; where

u(l)i = max
j
(h(l)j ), (i−1)×g+1≤ j≤ i×g (1)

The function takes the maximum over groups of inputs, h(l)j s,

which are arranged in groups of g. h(l)j is the jth element

of h(l) = W(l)u(l−1) +b(l). W(l) is the matrix of connection

weights between the (l−1)th and lth layers, b(l) is the bias

vector at the lth layer. In a maxout network, the nonlinearity

is dimension-reducing and I is the dimensionality after the

maxout function.

Generalized maxout networks may introduce other dimen-

sion reducing nonlinearities [16]. In this paper, we use the

p-norm one:

u(l)i = (∑
j
|h(l)j |p)

1
p , (i−1)×g+1≤ j ≤ i×g (2)

Where p is a configurable parameter. To train deep networks,

greedy layer-wise supervised training [18] is used ; first, a

randomly initialized network with one hidden layer is trained

for a short time; then, the weights that go to the softmax

layer are removed and a new hidden layer and two sets of

randomly initialized weights are added. The neural network

is trained again for the predefined number of iterations before

a new hidden layer is inserted. This is repeated until we

reach a desired number of layers. After the final iteration

of training, the models from the last iterations are combined

into a single model. In our study, the initial and final learning

rates are specified by hand and equal to 0.02 and 0.004

respectively, and we always set p = 2. More details about

the implementation and parameters are presented in [16].

III. PHONEME MAPPING IN MULTILINGUAL DNN

Fig. 1 depicts the architecture of the typical multilingual

DNN with shared hidden layers. In the multilingual target

layer, each language can have its own output layer, Fig.

1-(a), or a common output layer is used Fig. 1-(b). In

the latter, we need to provide a universal phoneme set;

to this end, we may either consider a language label for

each phoneme or merge phonemes. Simple concatenation of

language specific phoneme sets, in the first scenario, may

lead to performance degradation since very similar phones

from different languages could be considered as different

classes and the DNN would fail to discriminate between

them [8]. For the second scenario, prior knowledge of a

phonetician is required for the knowledge-based mapping

which may not always be accurate and thus the DNN must

encode disparate phonemes as a single class. This motivates

us to investigate if a data-driven phoneme mapping can

overcome the aforementioned problems. In the rest of this

section, we describe the knowledge-based and data-driven

phoneme mapping we used to train multilingual DNNs.

A. Knowledge-based Phoneme Mapping

The major assumption for knowledge-based (KB)

phoneme mapping is that the articulatory representations of
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Multilingual data

Language 1 Language 2

(a) Multilingual DNN with language dependent output
layer.

Input Layer

Shared hidden 
layers

Multilingual targets

Multilingual data

(b) Multilingual DNN with phoneme merged output
layer.

Fig. 1. Multilingual DNNs with different types of output layers.

phonemes are similar and their acoustic realization can be

assumed language independent. Based on this idea, universal

phoneme inventories such as the IPA have been proposed

[19]. In this study, the pronunciation dictionaries for the

Afrikaans and Flemish include 37 and 47 phonemes re-

spectively. In our KB phoneme mapping, each phoneme

from the Flemish dictionary is mapped to only one of the

phonemes in the Afrikaans one. To this end, 31 phonemes

that share the same symbol in the IPA table are merged.

However, there are 16 phonemes in Flemish without any

IPA counterpart in Afrikaans which are mapped based on

the linguistic knowledge. The phonemes: Ẽ, Ã, Õ and Ỹ are

simply mapped to /E n/, /A n/, /O n/ and /Y n/, and the rest are

mapped as described in Table I.

B. Data-driven Phoneme Mapping

In our data-driven (DD) approach, we assume to have

access to the pronunciation dictionary and the transcriptions

for the target language. Then, each phoneme in Flemish

can be mapped into N-best corresponding matches in the

Afrikaans by calculating a confusion matrix.

Afterwards, a new pronunciation dictionary is created

in which Flemish entries are described with the Afrikaans

phonemes. Table II includes two examples explaining how
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TABLE I

SUMMARY OF KNOWLEDGE-BASED PHONEME MAPPING BETWEEN

FLEMISH(FL) AND AFRIKAANS(AFR) LANGUAGES.

Fl Afr Fl Afr Fl Afr

G x Y: @ O: O
h H o: u@ Ei @i
I E e: i@ E: E
Y œ a: A: Au @u

the Flemish words “met” and “stipt” are phonetized in the

original Flemish lexicon and the new KB and DD ones. In

the first example, the phoneme “E” in the Flemish is mostly

confused with three phonemes in the Afrikaans: “@”, “œ” and

“@i”. Therefore, we consider three different pronunciations

for this word based on the phoneme “E” in the new lexicon.

In this setup, the size of the new dictionaries increase rapidly

with increasing N values. In addition, many of the Flemish

phonemes have dominant matchings based on the confusion

matrix; this is the case for almost all of the consonants. In

this study, we set N=1 for the consonants and N=3 for the

rest of the Flemish phonemes. It is also interesting to note

that the Flemish phoneme “E”, for example, was merged with

the Afrikaans phoneme of the same IPA symbol as in the

KB phoneme mapping. However, “E” is not among any of

the three candidates chosen by DD approach. This indicates

how differently the KB and the DD phoneme mapping may

work.

In the second example, three different pronunciations for

the word “stipt” are shown based on the phoneme “I”. This

phoneme has no IPA matching in Afrikaans and is mapped

to “E” according to linguistic knowledge as shown in Table

I. We should note that although the KB candidate for this

phoneme is among those selected by DD approach, we have

two more possible options for the mapping and depending

on the context the best one will be chosen later based on

the Viterbi alignment as a part of acoustic modeling. To

TABLE II

NEW PRONUNCIATION MODELING USING DD AND KB PHONEME

MAPPING.

Fl word Fl lexicon DD lexicin KB lexicon

met(1) m E t m @ t m E t
met(2) - m œ t -

met(3) - m @i t -

stipt(1) s t I p t s t E p t s t E p t
stipt(2) - s t i p t -

stipt(3) - s t @ p t -

generate the confusion matrix, we measure the KLD between

distributions of phonemes:

D(P ‖ Q) =
∫

P(x)log
P(x)
Q(x)

dx (3)

Where P and Q represent density functions of the phonemes

distributions in Afrikaans and Flemish respectively. It is

worth noting that since KLD is not symmetric, it is normally

appropriate for P to be the reference distribution and Q to

be an approximation to it [20]. KLD is straightforward for

normal distributions. However, for the multivariate Gaussian

Mixtures Models (GMMs), the KLD is not analytically

tractable and therefore we can use the variational approx-

imation of KLD between GMMs [21]:

Dv(P ‖ Q) = ∑
a

walog
∑a′ wa′e−D(Pa‖Pa′ )

∑b ŵbe−D(Pa‖Qb)
(4)

Where P = ∑a Pa and Pa = waN , and N represents the

normal distribution; similarly Q = ∑b Qb and Qb = ŵbN . w
and ŵ are the Gaussian weights assigned to the Gaussian

mixtures in the P and Q respectively. Dv is calculated for all

pairs of phonemes in Afrikaans and Flemish to construct the

confusion matrix. In this study, we use GMMs to model the

phoneme distributions. Noting that the number of Gaussian

components is set empirically and it equals two.

IV. DATABASES

A. Afrikaans data

The NCHLT corpus1 [22] is an Afrikaans database includ-

ing broadband speech sampled at 16 kHz. The phoneme set

contains 37 phonemes and silence. We have been provided

with a pronunciation dictionary as well as training, test

and validation sets. All repeated utterances were removed

from the original dataset. In our setting, to simulate a low

resource condition, a data set including 1 hour of data and

188 speakers was extracted from the training part and used

together with the original validation and test sets (Table III).

TABLE III

DESCRIPTION OF THE AFRIKAANS DATA SET AND A LOW RESOURCE

SUBSET FOR TRAINING PURPOSES.

Set: Train Test Dev

Duration 1h 2.2h 1.0h

# speakers 188 8 10

B. Flemish Data

The Spoken Dutch Corpus (Corpus Gesproken Neder-

lands, CGN) is a standard Dutch database that includes

speech data collected from adults in the Netherlands and

Flanders [23]. This dataset consists of 13 components that

correspond to different socio-situational settings. In this

study, we used Flemish data (audio recordings of speakers

in Flanders) from component-o which contains read speech.

This dataset includes 38 hours of speech sampled at 16KHz

and we have taken 36h for the training and 2h for the

evaluation. In this work, we used only the training part

including 36 hours as donor data produced by 150 speakers.

1Available from the South African Resource Management Agency
(http://rma.nwu.ac.za/).
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Flemish words in the CGN pronunciation dictionary are

phonetized by 47 phonemes which are mapped to the 37

phonemes of Afrikaans.

V. EXPERIMENTS

This section describes the experimental study performed

to evaluate the impact of deep generalized maxout networks

for low resource ASR as well as the proposed phoneme

mappings for multilingual DNN training. First, monolingual

experiments on Afrikaans are presented which serves as a

baseline. Then, we used Flemish to improve this performance

in the context of multilingual DNN. In this study, we used

the Kaldi ASR toolkit [24] for DNN training.

A. Monolingual Experiments

The first set of experiments was carried out on the

Afrikaans language. We used a standard front-end by ap-

plying a Hamming window of 25ms length with a win-

dow overlap of 10ms. 13-dimensional features including 12

MFCC coefficients and the energy were extracted. Then,

first and second derivatives were added and utterance-based

mean and variance normalization was applied in both training

and testing stages. These features were used to build 3-state

left to right HMM triphone models with a total number of

Gaussian components of ∼3000; this value was set using the

validation set (Table III).

We trained a bi-gram phoneme model on the training set

and the ASR performance is reported in phoneme error rate

(PER). The neural network’s inputs were the 24-dimensional

FBANK features being concatenated with 7 left and 7 right

neighbor frames, yielding a 360 dimensional input layer;

then, an LDA transformation matrix was applied without

dimensionality reduction. We observed that FBANK features

outperform MFCCs as input features for DNN. In this set of

experiments, we first trained standard DNN systems with

tanh activation functions. The number of context-dependent

triphone states (i.e. DNN targets) is 505; the number of units

in each layer equals 100 to achieve the best results. Table IV

provides the ASR performance using both HMM/GMM and

the corresponding hybrid DNN systems. Since we have only

one hour of training data, increasing the number of hidden

layers may degrade the performance. The PERs for hybrid

DNN systems with 1 and 2 layers are reported in Table IV;

we observed higher PERs for more hidden layers. The best

performance for monolingual DNN with tanh nonlinearity is

obtained with one hidden layer.

TABLE IV

PER(%) FOR AFRIKAANS USING HMM/GMM AND HYBRID DNN

SYSTEMS WITH tanh ACTIVATION FUNCTION TRAINED ON AFRIKAANS

DATA ONLY.

HMM/GMM
Hybrid DNN

1 layer 2 layers

PER(%) 25.18 24.49 25.35

Then, we trained DNNs with the p-norm activation func-

tion; in this case, we have one more parameter which

is the group size, g. The proper value for g and other

neural network parameters such as number of hidden layers

and the input dimensionality for the p-norm activation are

jointly tuned on the validation set. In Table V the PERs for

different numbers of hidden layers and different values of

g are presented. In these experiments I = 100 and various

input dimensionalities are investigated. Table V shows that

the performance is improved when a generalized maxout

network is used for such a low resource setting.

TABLE V

PER(%) ON THE AFRIKAANS USING HYBRID DNN SYSTEMS WITH

P-NORM NONLINEARITY AND VARIOUS SETTINGS WHERE THE P-NORM

OUTPUT DIMENSIONALITY IS I = 400.

input dim.
# of hidden layers

1 2 3 4

400 23.61 23.83 23.68 23.72

300 23.59 23.96 23.99 24.03

200 23.76 23.71 24.01 24.01

B. Multilingual Experiments

We subsequently merged the Flemish and Afrikaans train-

ing data based on both the knowledge-based and the data-

driven universal phoneme sets explained in section III. Then,

we trained a multilingual HMM/GMM system using 39-

dimensional MFCC features. The numbers of tied-states used

for the multilingual HMM/GMM system are 4131 and 3973

for the KB and DD approaches respectively.

Table VI gives the performance of the multilingual

HMM/GMM systems for the two types of phoneme mapping

by using the same bi-gram language model trained with

1 hour of Afrikaans. These results are presented here to

evaluate the effectiveness of the DD phoneme mapping. As

shown, DD phoneme mapping considerably improves the

performance of multilingual HMM/GMM systems; yet, it can

be seen that the PER is much higher than the monolingual

case presented in Table IV and Table V.

TABLE VI

PER(%) COMPARISONS FOR KB AND DD PHONEME MAPPING USING A

MULTILINGUAL HMM/GMM SYSTEM.

KB mapping DD mapping

PER(%) 45.89 39.81

Multilingual DNNs were subsequently trained by adopt-

ing context dependent decision trees and audio alignments

from the multilingual HMM/GMM systems. In this set of

experiments, the DNNs used p-norm activation functions and

were trained from 15 consecutive frames and 24 FBANK

features like DNN for monolingual setting. p-norm input

and output dimensionality were empirically set to 1000

and 200 respectively. To bootstrap the acoustic model for

Afrikaans, the hidden layers of the multilingual DNNs are

shared and the softmax layer is replaced with the output layer

corresponding to Afrikaans.
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Fig. 2. PERs(%) comparisons for KB and DD phoneme mapping using
multilingual DNN w.r.t. the number of hidden layers.

Fig. 2 shows a comparison of PERs obtained by multi-

lingual DNNs with different numbers of hidden layers and

reveals the following trends: first, both multilingual DNN

systems provide significant reductions in ASR PERs when

compared to the monolingual baseline systems presented in

Table IV and Table V. Secondly, a comparison between the

KB and DD phoneme mappings for DNN training shows that

the ASR performance tends to improve in the case of using

DD phoneme mapping. However, only marginal performance

differences are observed if the neural networks are trained

deep enough. This difference, however, depends on how

similar the results of the two phoneme mapping techniques

are. In this study, we observed that our DD technique maps

all consonants to the same Afrikaans phonemes as the KB

mapping does. Moreover, for many of the other Flemish

phonemes, the selected KB candidate is among those chosen

by the DD approach. For unrelated languages, however, DD

phoneme mapping may perform differently and consequently

lower PERs could be gained.

Finally, we examined another type of multilingual target

where phoneme targets for Flemish and Afrikaans are kept

separate Fig 1-(a). In this scenario, hidden layers are trained

with data from both languages while the softmax layers are

trained with language specific data where the number of

output targets for Flemish is 4113 and 505 for Afrikaans.

TABLE VII

PER(%) FOR 6 HIDDEN LAYER MULTILINGUAL DNNS WITH AND

WITHOUT PHONEME MAPPING.

Phoneme mapping No phoneme

mappingKB DD

PER 18.29 18.25 21.04

Table VII shows that multileveled DNN approaches, either

with or without phoneme mapping, improves ASR for low-

resource languages. Moreover, we observe that phoneme

mapping considerably improves the performance of multi-

lingual DNNs. This can be due to the fact that Afrikaans

and Flemish are closely related languages.

VI. CONCLUSION

This paper presented an investigation of using generalized

maxout networks and phoneme mappings for multilingual

DNN based acoustic modeling. Our aim was to improve

a speech recognizer for Afrikaans (as an example of a

resource-scarce language) with generalized maxout networks

and by borrowing data from Flemish (as an example of

a related well-resourced language). Phoneme sets of these

two languages were merged in both knowledge-based and

data-driven fashions. We proposed to use an approxima-

tion of KLD to generate the confusion matrix for the DD

phoneme mapping. This DD approach led to a performance

improvement which was more pronounced in the multilingual

HMM/GMM system than the DNN one. Moreover, we

observed that if we train neural networks deep enough, the

performance difference between two phoneme mapping ap-

proaches decreases. We also observed that phoneme mapping

is beneficial when Flemish data is used to boost the Afrikaans

recognizer in the framework of the multilingual DNN.
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