Forest Volume and Biomass Estimation Using Small-Footprint
Lidar-Distributional Parameters on a Per-Segment Basis
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Abstract: This study assessed a lidar-based, object-oriented (segmentation) approach to forest volume and
aboveground biomass modeling. The study area in the Piedmont physiographic region of Virginia is composed
of temperate coniferous, deciduous, and mixed stands. Segmentation objects, hierarchical in terms of area and
ranging from 0.035 to 5.632 ha/object, were created using a lidar-derived canopy height model. Horizontal point
(basal area) samples were used to calculate volume and aboveground biomass. Per-object lidar point (per return
height and intensity) distributional parameters were extracted from small-footprint lidar. Adjusted R* and
Mallow’s Cp metrics were used to select models for the range of segmentation results. Selected variables
included intensity-based and structurally related first through fifth return height parameters. Object-based
modeling (adjusted R* = 0.58—0.79; various object sizes) resulted in distinct improvements over stand-based
attempts (adjusted R* = 0.40—0.73; majority adjusted R* < 0.50). Adjusted R* and RMSE values for deciduous
volume (0.59; 51.15 m’/ha) and biomass (0.58; 37.41 Mg/ha) were better than those found for another,
plot-based study in the study area. Coniferous R” values for volume (0.66) and biomass (0.59) were lower than
previous studies, which was attributed to variability within the relatively narrow volume range (6.94-50.93
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mated using extensive in-field inventory methods or

aerial photography volume tables (Avery and
Burkhart 1994). Although field-based methods are typically
unbiased, both approaches are time-consuming and expen-
sive. Digital, large-scale remote sensing could provide a less
expensive option for estimation of forest biophysical pa-
rameters over large tracts, while potentially also providing
accurate and unbiased estimates. The structural nature of
lidar height data makes it especially suitable for gauging
forest volume and biomass. Lidar-based forest measure-
ments are not only of importance to general forest inventory
and canopy structure modeling (Lefsky et al. 2002a, b,
Nasset 2002, Popescu et al. 2004), but also to estimation of
forest fuel loads (Riafio et al. 2003, Seielstad and Queen
2003) and derivation of digital elevation models (DEMs)
(Popescu et al. 2002, Hodgson et al., 2003), all topics
applicable to forest management and site mapping. Lefsky
et al. (2002a) stated that lidar sensors are able to provide
accurate and nonasymptotic estimates of various forest in-
dices such as LAI and aboveground biomass. Lidar systems,
furthermore, could reduce the need for ground-based, small
scale measurements of tree heights and/or canopy parame-
ters, and provide increased automation and positional accu-
racy compared to photogrammetric techniques.

F OREST VOLUME AND BIOMASS have long been esti-

Large-footprint lidar sensors have been used extensively
for forest volume and biomass estimation (Lefsky et al.
1999, Means et al. 1999, Lefsky et al. 2002b). These sensors
typically have ground footprints of 5 to 25 m diameter
(Lefsky et al. 1999), as opposed to small-footprint sensors
with sub-meter diameter footprints, e.g., 0.65 m, used in this
study. The size of the footprint, coupled with typically low
horizontal sampling densities, limits the applicability of
large-footprint lidar sensors at the scale of active forest
management. However, small-footprint lidar measurements,
typically with multiple samples per square meter, enable
users to estimate volume and biomass even for small tracts
of forest. Small-footprint sensors have been used as early as
the mid-1980s for forest volume estimation (Maclean and
Krabill 1986, Nelson et al. 1988). Small-footprint lidar-
volume studies have implemented both plot- and stand-
based approaches (Nilsson 1996, Popescu et al. 2004). Lidar
height distributional approaches, based on extraction of
height distributional parameters (e.g., median, mode, per-
centiles) from all lidar returns within spatial units such as
grid cells, also have come to the fore (Means et al. 2000,
Nasset 2002). A lidar distributional approach to forest
volume and biomass modeling lends itself to object or stand
level application. Although they are not, strictly speaking,
waveforms, these distributions do have some similarities to
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waveforms since all height returns are accumulated per
sampling unit, resulting in per-unit height-frequency distri-
butions with high vertical resolution due to integration over
large objects. Like waveforms, these distributions enable
the characterization of canopy vertical structure, useful for
fine-scale, stand-level forest volume and biomass estima-
tion (Magnussen and Boudewyn 1998, Means et al. 2000,
Drake et al. 2002, Lefsky et al. 2002b, Nasset 2002).

Magnussen and Boudewyn (1998) illustrated that the
distribution of canopy heights for a Douglas-fir (Pseudo-
tsuga menziesii) stand was a function of vertical distribution
of foliage area. The proportion of laser pulses returned from
a given height was proportional to the fraction of leaf area
above it. This relationship was used to estimate mean stand
height and a strong correlation (R* = 0.8; SD = 2.2 m) was
found between laser and field estimates. Such a result cor-
roborated the usefulness of a distributional approach in
characterizing vertical structure. Means et al. (2000) imple-
mented a lidar distributional approach to estimate height
and basal area for Douglas-fir stands, ranging from shrub-
like (18 m3/ha) to old-growth (1,313-2,051 m3/ha) stands.
Lidar returns were extracted from 10 X 10 m grid cells
within larger 50 X 50 m measured plots. Distributional
parameters, e.g., canopy cover percentiles, maximum
height, elevation, average mean height, and average of the
maximum heights, were calculated for grid cells. Stepwise
regression analysis was used to determine the relationships
between ground data and lidar measurements, with depen-
dent variables being height, basal area, and volume. R*
values of 0.93 (RMSE = 3.4 m), 0.95, and 0.97 (no RMSE
for the latter two values) were obtained for height, basal
area, and volume, respectively. R> values for plots exclud-
ing old-growth plots were 0.98 (RMSE = 1.7 m), 0.94
(RMSE = 5.4 m*/ha), and 0.95 (RMSE = 73 m’/ha), for
height, basal area, and volume, respectively. Various per-
centile variables, e.g., the 90th height percentile and 20th
coverage percentile, were shown to be significant predictor
variables. Nasset (2002) predicted volume and crown pa-
rameters for Norway spruce (Picea abies) and Scots pine
(Pinus sylvestris) stands in Norway, using a stratum-spe-
cific (young forests; old-growth, on poor and good sites)
approach. Observed volume values ranged between 41
m>/ha and 639.8 m>/ha. Lidar first and last pulse distribu-
tion-based regression equations were used to model volume
and crown parameters. Various quantiles, maximum and
mean values, canopy density measures, and coefficients of
variation were used as independent variables. R? values for
61 reference stands were 0.87 (dominant height) and 0.91
(volume). Standard deviations ranged between 0.7 and
1.33 m (dominant height) and 18.3 and 31.9 m’/ha
(volume).

Extension of distributional grid-cell approaches, i.e.,
where lidar data are extracted per square sampling unit, to
object- and stand-level applications was a logical next step.
An object refers to a spatial entity that is homogenous in
terms of a selected property, as opposed to continuous fields
(Burrough and McDonnel 1998). Segmentation output can
be treated as entities or objects, since each object is homog-

enous in terms of a defined variable. Such an application
requires that distinct forest cover and structural types have
different, unique lidar canopy densities or distributions
(Douglas et al. 2003), and that object-level data have the
potential to decrease associated object-level errors (Makela
and Pekkarinen 2001, Pekkarinen 2002). Object-based mod-
eling not only extends a grid- or plot-level approach, but
also is amenable to stand-level scaling, since objects can
match existing structural management boundaries in forests.
However, scaling efforts assume that objects are hierarchi-
cal and topologically sound, i.e., smaller-level objects are
exact constituents of larger-level objects.

The basic precept of this study was that extraction of
lidar distributions on a grid-cell basis, used to model volume
and biomass (Means et al. 2000, Nasset 2002), could be
extended to estimation at the object or forest stand level.
The specific objective of this study was to determine
whether volume and aboveground biomass can be estimated
successfully using object-oriented analysis of lidar distribu-
tions. The success Means et al. (2000) and Nasset (2002)
had with their cell-based distributional approaches boded
well for the methodology in this study, since they showed
that heights, basal area, and volume can be estimated for
coniferous species using cell-derived distributions. Object-
based modeling extends this approach to estimate biophys-
ical parameters for discrete entities derived from the lidar
data themselves.

Methods
Study Area

The 946 ha (2,338 acre) study area is located in Appo-
mattox Buckingham State Forest (Appomattox County) in
the Piedmont physiographic province of Virginia, south-
eastern USA, at 78°41'W, 37°25'N (Figure 1). The mean
elevation of the study area is 185 m (606 ft), with minimum
and maximum elevations of 133 m (436 ft) and 225 m (738
ft), respectively. Local topography can best be described as
gentle rolling slopes and flat terrain. Vegetation is com-
posed of various coniferous (Pinus taeda, P. virginiana, P.
echinata, and P. strobus), deciduous (Quercus coccinea, Q.
alba, and Liriodendron tulipifera), and mixed forests.

Available Data

Lidar data were acquired by Spectrum Mapping, LLC
using the DATIS II (small-footprint, high-density, multiple
return) system. The lidar data were acquired on Sept. 9,
2002, centered at 78°40'30"W, 37°25'9"N, and covered an
area of approximately 958 ha (2,367 acres). Specifications
of the lidar data set are given in Table 1.

Field data consisted of 256 mapped basal area plots
(BAF; basal area factor 10) on a 16 columns by 16 rows,
201.17 m (10 chains) grid spacing. Field data were collected
during the summer, fall, and winter months (May—Dec.) of
2003. Differentially corrected plot location, plot basal area
and diameter at breast height (dbh), height, and species were
determined for all plots and tallied trees. A total of 219 BAF

Forest Science 52(6) 2006 637



sz"
o

Ksbur

200 Kilometers o

Appomattox-Buckingham State Forest
Located in the Virginia Piedmont
physiographic region (Appomattox County)

Arlington
ottesville
y /
Ric] 0
Norfolk
- |Vir ginia Beach

Figure 1. Study area: Appomattox Buckingham State Forest, Virginia, USA.

Table 1. DATIS II lidar data set characteristics

Characteristic Specifications

2,000 m (6,562 ft.) above
ground level

75° maximum

800 m (2,625 ft.) and 400 m

Laser altitude

Laser scan field-of-view
Swath width and centerline

spacing (1,312 ft.)
Scan rate 25 Hz
Laser pulse rate 35 kHz
Scan angle * 13.5°
Returns =5
Resolvable distance between 0.75 m

returns
Footprint 0.46 m (1.51 ft.)

Spacing across/along track
Accuracy (X, Y, Z)

1 m (3.3 ft.)/2 m (6.6 ft.)
X,Y:05m; Z:0.15m

X, Y: <1.6ft;Z <049

ft.)
Post-processed GPS < 0.05 m
accuracy
Wavelength 1,064 nm

plots ultimately were used in the statistical analysis since 37
plots were located on private land or had basal area values
of zero (no forest type differentiation possible).

Plots were assigned to two- and three-class forest type
schemes based on basal area percentages. “Deciduous” or
“Coniferous” types were defined as plots that had 50% or
greater basal area contribution, i.e., majority contribution,
from either deciduous or coniferous species, respectively. A
“Mixed” class was added to the three-class type designation
for plots that had less than 90% basal area contribution for
either deciduous or coniferous species. A 90% cutoff was
based on final sample numbers for the two- and three-class
schemes. The two-class analysis consisted of 140 deciduous
and 79 coniferous plots, while the three-class analysis con-
sisted of 112 deciduous, 56 coniferous, and 51 mixed plots.
This allowed for volume and biomass model development
based on adequate plot samples (>30) for both the two- and
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three-class analysis. Only 25 (11.4%) of the plots were
mixed when a 75% cutoff was used, resulting in a redundant
class that was too small for viable statistical analysis.

The BAF plots were expanded to a per-hectare basis for
each object, since per-object field plot data were used for
model development and validation. This was done using
standard BAF expansion equations (Avery and Burkhart
1994).

Volume and biomass equations (Saucier and Clark 1985,
Clark et al. 1986, Schroeder et al. 1997, Sharma and Oder-
wald 2001) for per-tree calculations were similar to the
equations used by Popescu et al. (2004). This latter study
was situated within the same geographical boundaries, with
the same species being studied. Specific volume and bio-
mass equations were used for loblolly and other southern
pines, as well as for hardwoods. Volume and biomass were
calculated on an individual tree basis for each plot and
expanded to per-hectare values for each object. Plots were
assigned to the object in which they were located. This was
done through poststratification for selected segmentation
results. BAF plot values were averaged on a per-object basis
in the case of larger objects that contained more than one
field plot. Descriptive statistics for all basal area plots are
given in Table 2.

Lidar Data Processing

A canopy height model (CHM) was needed for segmen-
tation. Seven outliers (>6 m difference from neighboring
values), attributed to “bird-hits” or lidar error, were re-
moved. The first returns were median-filtered by 1-m grid
cells to remove per-cell values that were redundant to sub-
sequent interpolation procedures. Bare ground returns were
supplied by the data provider and were based on a propri-
etary algorithm that incorporates the return number and
associated intensity to identify nonvegetation last returns.
First-order canopy returns and ground returns, i.e., vegeta-
tion-removed last returns, were interpolated to a 1-m spatial



Table 2. General descriptive information for deciduous, coniferous, and mixed plots

Class and Type Parameter Minimum Maximum Average o
2-class
Deciduous plots (140) Volume/ha (m*/ha) 6.94 350.65 157.64 84.14
Biomass/ha (Mg/ha) 11.11 269.01 113.60 58.60
Basal area/ha (m?/ha) 2.30 34.44 16.32 7.84
Coniferous plots (79) Volume/ha (m>/ha) 8.32 350.93 114.49 75.44
Biomass/ha (Mg/ha) 4.67 155.56 41.47 26.64
Basal area/ha (m?/ha) 2.30 36.73 14.24 791
3-class
Deciduous plots (112) Volume/ha (m>/ha) 6.94 350.65 156.16 89.32
Biomass/ha (Mg/ha) 11.11 269.01 117.31 62.53
Basal area/ha (m>*/ha) 2.30 34.44 15.97 8.21
Coniferous plots (56) Volume/ha (m>/ha) 8.32 278.99 100.45 66.42
Biomass/ha (Mg/ha) 4.67 81.65 33.66 19.95
Basal area/ha (m?*/ha) 2.30 36.73 13.61 8.11
Mixed plots (51) Volume/ha (m>/ha) 31.68 350.93 156.85 72.60
Biomass/ha (Mg/ha) 20.06 175.75 81.49 38.93
Basal area/ha (m?*/ha) 4.59 36.73 16.84 6.68

resolution grid using regular Kriging, since Popescu et al.
(2002) found this to be the most accurate interpolation
technique using similar data for the same study area. This
approach effectively addressed instances where a 1-m grid
cell lacked an original input value. The resultant 1-m reso-
lution was detailed enough to detect road and stand breaks
in the segmentation process. Interpolation was performed
using Surfer 7.0 software (Golden Software, Inc.). The
differenced first- and ground return surface (CHM) was
used as input to the eCognition segmentation algorithm.
This allowed for extraction of forest objects based on height
homogeneity and distinct stand breaks, e.g., roads and slope
breaks.

The distributional modeling approach, based on height
distributional parameters, required that lidar data be pro-
cessed on a per-return basis to retain information related to
the return hierarchy. Ground hits were removed using
Terrascan V. 003.002 (Terrasolid, Inc.) and MicroStation V.
08.00.04.01 (Bentley Systems, Inc.) software. This algo-
rithm identifies ground hits based on iterative slope analysis
of lidar returns. Grid cell size and maximum slope of the
area are required input parameters. Grid cell size is the
smallest cell size for which a ground return can be extracted.
A cell size of 10 m was used to extract a maximum number
of ground returns for the first (31,294,660), second
(11,101,215), and third (2,121,989) returns. Grid cell sizes
of 39 m and 119 m were used for the fourth (175,093) and
fifth (5,379) returns, respectively. Larger grid cell sizes
were required for the last two categories due to the small
number of returns in each case. These latter two cell sizes
occurred in cases where the number of ground hits reached
a maximum for the fourth and fifth returns as algorithm cell
size was increased. This approach was based on the assump-
tion that most of the hits from the fourth and fifth return
categories would be ground hits due their ranking in the
return hierarchy. A slope percentage parameter of 35% was
used as a maximum for the area, obtained from a USGS
DEM. Ground returns constitute an important component of

overall lidar distributional patterns and were retained as data
sets on a per-return basis.

Nonground hits, designated as vegetation hits, were nor-
malized for varying terrain elevations, thereby enabling
volume and biomass models to incorporate actual lidar point
heights (Means et al. 2000). This was done by calculating
the actual return height above a lidar-derived 1-m DEM of
the study area. The actual height of each vegetation hit was
calculated as the difference between the vegetation hit and
the bilinear interpolated height of the four corner cells of the
DEM cell directly beneath each hit, using Surfer V. 8.1
software (Golden Software, Inc.).

Segmentation of the Study Area

Segmentation was performed using a multiresolution,
hierarchical algorithm (eCognition V. 3.0; Definiens imag-
ing 2003) applied to the lidar-derived CHM of the study
area. Lidar data were considered a structural component,
ideally suited to defining homogenous structural objects
through segmentation. The eCognition algorithm considers
an entire image, evaluates object homogeneity (within-ob-
ject variance), shape, compactness, and smoothness, and
expands objects across the image to ensure resultant objects
of similar size and shape (Baatz and Schipe 2000). This
algorithm requires color:shape and smoothness:compact-
ness ratios as input parameters. The color:shape ratio was
set at 0.8:0.2, based on the recommendation of the devel-
opers (Baatz and Schipe 2000, eCognition 2003) and eval-
uation of alternative parameter inputs. Object smoothness
was considered more important than shape in a forestry
context, since smooth, boundary-following objects are pref-
erable to compact, blocky objects. The smoothness:com-
pactness weight combination therefore also was set at
0.8:0.2.

Although eCognition was chosen as the preferred seg-
mentation approach, one could argue that the segmentation
method is subordinate to the utility that resultant objects

Forest Science 52(6) 2006 639



have to analyses. Even though a multitude of segmentation
approaches exist in literature, e.g., the Woodcock-Harward
(centroid linkage) algorithm (Shandley et al. 1996), a
Hough transform-based approach (Shankar et al. 1998), and
watershed-based hierarchical segmentation (Li et al. 1999),
it is ultimately of great importance that segmentation results
are robust. Other important factors are ease of operational
use, widespread availability, and adequate software support.
eCognition, furthermore, was the preferred approach for
segmentation because of its hierarchical nature, correspon-
dence to input data, and since results from this algorithm
have been validated in the natural resources context (Kayi-
takire et al. 2002, Nugroho et al. 2002a, b, Engdahl et al.
2003, Kellndorfer and Ulaby 2003, Kressler et al. 2003).

The decision of which segmentation results to use for
model development was based on between- and within-ob-
ject variability of the CHM: Models were fitted to segmen-
tation results where within-object variability was smaller
than between-object variability. The smallest selected ob-
ject size corresponded to the circular BAF plot area, with
radii defined by average tallied tree distance from BAF plot
centers plus one and two standard deviations. This ensured
that objects were representative of plot-level field data,
based on corresponding areas. Ten average object sizes,
ranging from 0.035 ha/object to 3.942 ha/object, subse-
quently were chosen for volume and biomass model devel-
opment. This was done to evaluate model performance
across a range of average object sizes. The current Appo-
mattox stand map (167 stands, 5.666 ha/stand) also was
selected, as well as the segmentation result that corre-
sponded to the number of operational stands (168 objects,
5.632 ha/object). Operational stands were used to compare
object-based modeling to stand-based modeling. Vegetation
and ground lidar data sets were extracted on a per-object
basis for all segmentation results using ARCGIS V. 8.3
software (ESRI). Resultant data sets were exported to SAS
V. 8.02 software (Level 02MO; SAS, Inc.) for subsequent
regression analysis.

Regression Analysis

The intent of this study was to extend lidar distributional,
grid-cell forest volume and biomass modeling (Means et al.
2000, Nasset 2002) to estimation at the object or forest
stand level. Lidar distributions should be representative of
stand structural characteristics such as canopy closure and
stand height distribution. Theoretically, distributions from
whole objects approximate waveform lidar data for that
object, which in turn gives an indication of vertical vegeta-
tion distribution, a property closely related to biomass
(Magnussen and Boudewyn 1998, Means et al. 2000, Nes-
set 2002). Intermediate return distributions also had poten-
tial utility, since these returns represent forest structure. A
multi-tiered forest structure theoretically will have many
intermediate returns, while an even-aged, weed-controlled,
and thinned pine stand might exhibit a majority of first and
last returns, with few intermediate hits.

Distributional parameters were derived only for first- and
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second-return vegetation data sets because of objects with
missing parameter values for the third through fifth returns.
An object with limited or sparse vegetation, for instance,
potentially could exhibit only first and last returns due to
sparser understory or reduced canopy complexity, while
cursory analysis showed that all objects had at least two sets
of returns. Distributional parameters included the mean,
coefficient of variation, kurtosis, maximum, minimum,
mode, range, standard error of the mean, skewness, SD,
number of observations, height percentile points at 10%
intervals of height values, and canopy cover percentiles.
Canopy cover percentiles were based on the proportion of
first returns smaller than a given percentage, in steps of
10%, of maximum height to include all possible first-return
values. For example, the 10% canopy cover percentile was
defined as the ratio of per-object first returns smaller than
10% of the maximum height and the total number of first
returns for that object. The ratio of the number of vegetation
or ground hits and the total number of lidar hits per object
also was calculated. This was done for the second and third
through fifth group vegetation hits, as well as first, second,
and third through fifth group ground hits. The vegetation
ratio for each object was calculated as the ratio of the
number of vegetation hits per object and the total hits for
that object. These distribution metrics have been shown to
be useful descriptors of tree volume for 10 X 10 m grid cells
in Douglas-fir, western Oregon stands (Means et al. 2000)
and 200 m? sample plots in Norway spruce and Scots pine
stands in southeast Norway (Nasset 2002). Lidar intensity
distributional parameter values for the first and second
returns included the intensity mean, median, coefficient of
variation, maximum, minimum, range, standard error of the
mean, and SD.

Linear regression analysis was performed using object
volume and biomass as dependent variables. Independent
variables were reduced by a forward selection process
with « values set between 0.075 and 0.350 as signifi-
cance levels for remaining in the model. The goal was to
reduce independent variables from 75 initial variables to
fewer than 10 variables in all cases. Forward selection
was chosen over the stepwise selection used by Means et
al. (2000), since forward selection retains all significant
predictor variables, whereas stepwise selection discards
variables that become less significant as more variables
are added. Variables were validated based on Pearson’s
correlation coefficients between independent and depen-
dent variables. All variables with correlations of 0.8 or
lower were retained. However, only the variable with the
highest correlation to the dependent variable was retained
in cases where independent variable correlations were
higher than 0.8, thereby ensuring an objective variable
selection. A value of 0.8 was chosen based on data
characteristics, with the knowledge that all lidar-derived
variables are height-related, resulting in inherently high
correlations. This cutoff value resulted in predictive vari-
ables remaining in developed models, while highly cor-
related variables (r > 0.9) were eliminated. These meth-
ods were crucial to avoid statistically invalid models



(overfitting) in the final regression step, namely linear
regression using Mallow’s Cp and adjusted R* as selec-
tion criteria.

Mallow’s Cp selection takes all combinations of inde-
pendent variables into account while calculating a value
related to the mean square error of a fitted value for all
models (Draper and Smith 1981, Montgomery et al. 2001).
Approximately 10 or fewer candidate models from many
recombination possibilities were selected for each model
based on Mallow’s Cp and adjusted R” values, as well as
number of independent variables. Although Mallow’s Cp
and adjusted R* values alone were valid fit criteria, RMSE
(where applicable), model simplicity and model validity
also were considered. Cases with a very slight increase in
Cp values (<1 unit) and decrease in adjusted R values
(~0.01), with the benefit of fewer independent variables,
were considered simpler with marginal sacrifice in fit sta-
tistics. Lastly, models with less abstract independent vari-
ables, e.g., range, mean, and maximum values, were favored
over models with variables related to standard error of the
mean, coefficient of variation, SD, and the like.

Regression analyses were performed for segmentation
results of 0.035 ha/object, 0.091 ha/object, 0.141 ha/object,
0.318 ha/object, 0.642 ha/object, 0.964 ha/object, 1.263
ha/object, 1.885 ha/object, 2.53 ha/object, 3.942 ha/object,
5.632 ha/object, and the Appomattox Forest stands (5.666
ha/object). Analyses were applied to two- and three-class
schemes as well as for all objects combined. In the first
case, models were fitted to the Deciduous and Coniferous
groups. Deciduous objects numbered from 61 to 140 ob-
jects, while coniferous objects ranged between 34 and 79
objects, depending on the average object size and number of
BAF plots that were averaged for larger object sizes. Anal-
yses were performed on Deciduous (43—112 objects), Co-
niferous (22-56 objects), and Mixed (30-51 objects)
classes in the case of the three-class forest scheme. Regres-
sion analyses were limited to objects with nonmissing val-
ues for distributional parameters used in Mallow’s Cp re-
gression selection. The only case with missing distributional
parameter values occurred at 0.035 ha/object (27,050 ob-
jects) for the two-class (16/140 deciduous and 9/79 conif-
erous missing objects) and three-class (14/112 deciduous
and 1/51 mixed missing objects) forest definitions.

Results

Variable reduction through implementation of forward
selection succeeded in reducing independent variables from
the original 75 variables to fewer than 10 in each case.
Variables were well distributed across the entire range of
possible selections, with no evident trend in variable selec-
tion. Distributional variables were present for vegetation
hits from the first and second returns, while intensity vari-
ables, percentiles, canopy cover percentiles, and ratio vari-
ables all were represented across forest types and segmen-
tation treatments. Intensity mean, maximum, and range
variables of both first- and second-return vegetation hits
were especially well represented. This indicated that inten-

sity values are of significance in the modeling of forest
biophysical parameters (Means et al. 1999, Brandtberg et al.
2003). Kurtosis and skewness variables were prevalent in
deciduous and coniferous volume and biomass variable sets.
Although vegetation or canopy cover percentiles often were
well represented, only the percentile most highly correlated
to the dependent variable ultimately was selected. Specific
significant variables, related to a forest type, were fre-
quently present in both the volume and biomass models for
that type. This was not unexpected due to volume and
biomass being highly correlated metrics (r =~ 0.87). Strong
representation from a wide range of distributional parame-
ters indicated that simple metrics such as mean and extreme
values were supplemented by parameters such as skewness,
kurtosis, percentiles, and canopy percentiles. Results such
as these build a strong case for the use of multiple return
lidar data, and even associated intensity-per-return, for the
modeling of forest biophysical parameters. This might be
especially critical in areas that contain forests with high
variability in site, growth, and composition. The inclusion
of second-return variables indicates that forest structure is
an important aspect in volume and biomass modeling ap-
proaches. Second-return variables, by definition, contribute
to defining height levels other than the upper to top canopy,
describing aspects of forest vertical structure besides can-
opy height.

Lidar height distributions were found to be representa-
tive of BAF plot measurements. Figure 2 shows the lidar
first-return vegetation distributions for randomly selected
deciduous and coniferous objects across a range of volume-
per-hectare field measurements. Objects with lower mea-
sured volume-per-hectare exhibited either fewer hits at
taller tree heights or generally shorter trees than objects with
higher volume-per-hectare measurements. Changes in dis-
tribution types also were evident with distributions for
lower volume-per-hectare objects being skewed to the right,
and vice versa. Distributions for intermediate volume-per-
hectare objects resembled normal distributions. Model se-
lection of percentile, skewness, canopy cover, and kurtosis
variables were evident when distributions were evaluated.
Factors such as skewness and percentage hits below per-
centiles were logical selections for distinguishing between
different volume-per-hectare levels, based on distribution
shapes and height frequencies. Metrics such as minimum
and mean values also played a role due to the number of
returns at the lower and upper limits of each distribution and
their contribution to the measured minimum and average
value.

Figure 3 shows an example of deciduous and coniferous
objects with similar volume-per-hectare values across in-
creasing average object sizes. Distributions for each type
visually remained similar in shape as average object size
increased. Coniferous distributions, for example, remained
relatively similar in shape as average object size increased,
although the number of returns increased, resulting in a
smoother curve. There were no distinct trends visible when
deciduous were compared to coniferous distributions, al-
though there appeared to be more upper and lower tail
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Figure 2. (a) Deciduous and (b) coniferous per-object (0.035 ha/object)
histogram plots for lidar first-return vegetation hits across a range of
field-measured volume-per-hectare.

values in the case of deciduous objects. This was attributed
to trees of above-average height and undergrowth, respec-
tively, as commonly found in an uneven-aged stand.
Correlation analysis formed a critical component of
the preprocessing analysis by removing unwanted high
correlations, reducing independent variables even fur-
ther, and ensuring viable, valid models. Correlated vari-
ables were intuitive in most cases, e.g., the 20th, 30th,
and 50th first-return vegetation percentiles. However,
thorough evaluation of variable correlations was required
to identify other highly correlated variables, e.g., the 70th
percentile of the first returns and the 30th canopy cover
percentile. Percentile metrics especially were problem-
atic in terms of correlations. Two-thirds of percentile
parameters often had to be removed due to high inter-
variable correlations. Table 3 lists final variable sets that
were used as input to Mallow’s Cp selection, after sig-
nificance and correlation reduction, and that ultimately
resulted in the best adjusted R? values for all forest types.
Variables again were distributed across the entire spec-
trum of possibilities, with canopy cover and regular per-
centiles well represented, and even intensity values still
being present. Mallow’s Cp selection, which followed
variable reduction, resulted in an exhaustive combina-
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Figure 3. (a) Deciduous and (b) coniferous first-return, vegetation
height distributions for variable size objects with 153.02 m*/ha and
159.50 m*/ha volume, respectively.

tion-set of independent variables, with model Cp values
increasing and adjusted R? values decreasing as model
complexity increased.

Table 4 lists the best-performing models (adjusted R?)
and associated descriptive statistics for two- and three-class
forest schemes, as well as the adjusted R? and RMSE values
for the existing Appomattox stands (5.666 ha/object). Fig-
ures 4 and 5 show the residual behavior for the best per-
forming two-class volume and biomass models, 5.632
ha/object and 0.091 ha/object, respectively. Final model
selection was based on Cp, adjusted R>, RMSE, and espe-
cially number of independent variables. The latter criterion
was crucial due to the close performance of candidate
models based on other fit statistics. Except for coniferous
volume and biomass models, most models could be limited
to five or fewer independent variables without appreciable
loss in goodness-of-fit for each specific forest type. This
was attributed to the relative homogeneity found in such
coniferous stands, resulting in an increased number of in-
dependent variables that were correlated to the dependent
variables, as opposed to heterogeneous deciduous stands,
where fewer independent variables were deemed significant
for modeling (Figures 2 and 3). Pure forest stands in public
ownership are relatively limited in the Virginia Pied-
mont, resulting in variable mixed stands with basal area



Table 3. Final variable sets that were used as input to Mallow’s Cp selection, after significance and correlation reduction, and ultimately resulted

in the best adjusted R? values for all forest types selection

Model Variables

Removed variables

Adjusted R? Object size (ha)

2-class Volume
D P_Veg2 10 P_Veg2 70
MinInt2 ZeroNgrnd3_Sratio
Canopy20P Canopy80P
C ModeVegl P_Vegl_40
RangeVeg2 MedianVeg2
StdInt2 ZeroNgrnd3_Sratio
A CVVegl MinVegl P_Vegl_50
MaxIntl MedianIntl
MinVeg2 Minlnt2
Canopy30P
2-class Biomass
D MinVegl P_Veg2 10
P_Veg2 75 CVInt2
ZeroNVeg2ratio Canopy20P
Canopy70P
C CVVegl P_Vegl_20
MedianIntl P_Veg2_40
StdInt2 Vegratio Canopy40P
Canopy70P
A CVIntl CVVeg2 P_Veg2 10
P_Veg2_30 P_Veg2_75
ZeroNVeg3_Sratio
Canopy80P
3-class Volume
D MinIntl MaxVeg2 ModeVeg2
P_Veg2 70
ZeroNgrnd3_Sratio
C P_Vegl_30 StdMeanInt2
StdInt2 MedianInt2
ZeroNgrndl1ratio Canopy70P
M ModeVegl Minlntl MinVeg2
StdMeanInt2
ZeroNgrndlratio Canopy10P
Canopy50P Canopy80P
3-class Biomass
D ModeVeg2 P_Veg2 75
Rangelnt2 StdMeanInt2
ZeroNgrnd3_Sratio
Canopy90P
C P_Vegl_25 MedianIntl StdInt2
MedianInt2
ZeroNgrnd3_Sratio
M KurtosisVegl MinVegl
ModeVegl P_Vegl_10
CVIntl Rangelntl
ZeroNVeg3_Sratio
Canopy60P Canopy80P

SkewnessVeg2 SkewnessVegl 0.59 5.632

Canopy30P 0.66 5.632

P_Vegl_70 0.59 0.091

KurtosisVeg2 Canopy80P 0.58 5.632

None 0.59 0.091

P_Vegl_30 0.66 5.632

CVVeg2 Minlnt2 0.62 5.632

None 0.67 0.642

None 0.74 5.632

KurtosisVeg2 Minlnt2 0.62 5.632

None 0.63 3.942

Canopy50P 0.79 5.632

D = deciduous; C = coniferous; A = all objects/types; M = mixed.

Veg = Vegetation lidar hit; Grnd = Ground lidar hit; Int = Intensity associated with lidar hit; Vegl, 2, or 3_5 = first, second, or grouped third through
fifth returns; P_..._10-90 = Percentiles; CV = Coefficient of variation; StdMean = Standard error of the mean; Std = Standard deviation;
Canopy10-90 = Canopy cover percentiles; N . . . ratio = Vegetation or ground hits as a ratio of return totals; Vegratio = Vegetation hits as a ratio of total

hits

contribution from both deciduous and coniferous species.
While mixed deciduous stands have similar heteroge-
neous characteristics, a deciduous-coniferous mix re-
sulted in lower R* values when compared to the more
homogenous coniferous type.

Discussion

Adjusted R* values for coniferous species volume were
lower than those found in two comparable studies by Means et

al. (2000, adjusted R?) and Nzsset (2002, R%), both of which
used a grid-cell based lidar distribution approach to volume
modeling. R* values for these two studies ranged from 0.91 to
0.97, while species were limited to Douglas-fir (Pseudotsuga
menziesii) (Means et al. 2000) and Norway spruce (Picea
abies) and Scots pine (Pinus sylvestris) (Nesset 2002). Stands
also varied from shrublike (18 m?ha) to old-growth (2051
m’/ha) (Means et al. 2000) and young forest (41 m’/ha) to
mature forest (639.8 m*/ha) in the case of Nasset (2002). The
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Table 4. Models with the highest adjusted R? values for volume and biomass modeling for 2- and 3-class schemes

Object Stand
Object Stand RMSE RMSE Object
adjusted adjusted (m*/ha or (m*/ha or size
Model R? R? Mg/ha) Mg/ha) (ha)

2-class Volume
D: 262.37385 + 19.92957 0.59 0.44 51.15 63.56 5.632
P_Veg2 70 + 208.14833
ZeroNgrnd3_Sratio —387.67008
Canopy80P
C: 458.52340 — 4.18276 ModeVegl 0.66 0.48 38.03 55.61 5.632
+ 1543186 P_Vegl_40 — 5.59238
RangeVeg2 — 0.36692 StdInt2
A:309.84855 + 0.29731 CVVegl 0.59 0.42 53.75 62.36 0.091
+ 13.66277 MinVegl + 11.12989
P_Vegl 50 — 0.14246
MedianIntl — 432.13149 MinVeg2 +
55.39894 Canopy30P
2-class Biomass
D: 271644 + 1,3993 0.58 0.43 37.41 45.84 5.632
P_Veg2 75 — 286090
ZeroNVeg2ratio —75577 Canopy70P
C: 185653 + 2262.86568 0.59 0.40 17.15 19.45 0.091
P_Vegl_20 — 29.74409
MedianIntl + 3533.08872
P_Veg2 40 — 91682
Vegratio —20694 Canopy70P
A: 343583 —1370.95705 CVIntl + 0.66 0.46 33.14 41.18 5.632
316.85290 CVVeg2 + 1,5082
P_Veg2 75 — 132911
ZeroNVeg3_Sratio —314776

Canopy80P
3-class Volume
D: —31.77814 + 19.67658 0.62 0.46 55.98 68.16 5.632
P_Veg2_70
C: 303.72815 + 15.71060 0.67 0.73 38.24 40.08 0.642

P_Vegl_30 — 1.78646
StdMeanInt2 — 0.59669 StdInt2 +
0.06230
MedianInt2 + 737.63803
ZeroNgrndlratio + 146.83730
Canopy70P
M: 255.71328 — 3.17225 ModeVegl + 0.74 0.57 28.02 46.68 5.632
1.54155 Minlntl — 5.84654 StdMeanInt2
— 444.06932 ZeroNgrndlratio
—111.50951 Canopyl0P —145.92581
Canopy50P —413.21393 Canopy80P
3-class Biomass
D: —134083 + 1,6205 0.62 0.46 39.48 48.61 5.632
P_Veg2 75 + 2460.48834
StdMeanInt2 + 159205 ZeroNgrnd3_Sratio
C: —84498 + 6498.76606 0.63 0.70 12.06 12.56 3.942
P_Vegl_25 + 44.56384 MedianIntl —
81.96051 StdInt2 + 7,8560
ZeroNgrnd3_Sratio
M: 1493940 — 601912 MinVegl + 0.79 0.68 16.32 20.29 5.632
4984.27818 P_Vegl_10 — 370.80540
Rangelntl + 8,4546
ZeroNVeg3_5Sratio —612016
Canopy80P

D = deciduous; C = coniferous; A = all objects/types; M = mixed

Veg = Vegetation lidar hit; Grnd = Ground lidar hit; Int = Intensity associated with lidar hit; Vegl, 2, or 3_5 = first, second, or grouped third through
fifth returns; P_..._10-90 = Percentiles; CV = Coefficient of variation; StdMean = Standard error of the mean; Std = Standard deviation;
Canopy10-90 = Canopy cover percentiles; N . . . ratio = Vegetation or ground hits as a ratio of return totals; Vegratio = Vegetation hits as a ratio of total hits

range of forest volume and growth-types, low single species fixed plot measurements that directly corresponded with lidar
variability, averaging effect of plot-based measurements, and plot boundaries could have contributed to higher R values in
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Figure 4. Two-class volume model (0.091 ha/object): Field-measured
versus predicted volume/ha values for all plots combined (adjusted
R* = 0.59).
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Figure 5. Two-class biomass model (5.632 ha/object): Field-measured
versus predicted biomass/ha values and residuals for all plots com-
bined (adjusted R*> = 0.66).

these two studies. However, RMSE values were comparable to
those found by Means et al. (2000; 73 m*/ha, old-growth plots
excluded) and Naesset (2002; 18.3-31.9 m*/ha), indicating that
an object-based approach has potential for extension to oper-
ational application.

Coniferous adjusted R* values for volume in this study
ranged from 0.46 (two-class, 1.885 ha/object) to as high as
0.67 (three-class, 0.642 ha/object. Lower adjusted R? values
were attributed to a narrower range in volume and biomass-
per-hectare values for this study (6.94-350 m¥/ha;
4.67-269.01 Mg/ha). This was due to more intrinsic vari-
ability found in this narrower range, while an increased

observed range with lower variability likely will result in
better model fit statistics. Plot sampling technique also was
a potential source of variability. Unlike the complete grid-
cell inventory by Means et al. (2000), not every tree within
an object was measured in this approach. Although BAF
plot measurement is an established forestry inventory tech-
nique, it does not account for all trees on a given plot. The
assumption that each object was represented by its enclosed
BAF plot therefore could have had an impact on the results.

Coniferous RMSE values for this study (38.03-56.73
m>/ha; 12.06—19.70 Mg/ha) compared favorably with those
found by Means et al. (2000, 73 m>/ha) and Neasset (2002,
18.3-31.9 m%ha). This is of practical importance, since
model extension to real-world estimates is reliant on preci-
sion estimates. Considering the range of deciduous RMSE
values from 50.39 m*/ha to 61.72 m*/ha (volume) and 37.41
Mg/ha to 48.61 Mg/ha (biomass), operational applications
are feasible. RMSE values are of greater importance to
operational implementation than R? values since they pro-
vide information on the precision of the estimate.

Although coniferous results were worse than those for a
plot-level lidar study of Popescu et al. (2004) in the same
area, adjusted R? values for deciduous types were signifi-
cantly higher. The highest values for this study were 0.59
(two-class, 5.632 ha/object) and 0.62 (three-class, 5.632
ha/object) versus an unadjusted R? of 0.36 found by
Popescu et al. (2004). This latter result is of importance,
indicating the potential of an object-based approach to de-
ciduous volume- and biomass modeling, specifically when
compared to Forest Inventory and Analysis (FIA) type plots.
Object-based, as opposed to plot-based, approaches might
be better suited to deciduous modeling due to the more
diverse structure of deciduous growth being captured
through data-derived objects. Small-radius plot-level decid-
uous volume and biomass modeling are problematic due to
extra-plot stand variability and the large size (crown width)
of old-growth deciduous trees.

Derivation and use of objects as measurement units en-
capsulated deciduous units better than a fixed plot-based
approach. However, the lower coniferous adjusted R* values
found in this study were attributed to the relative diversity in
coniferous objects. This is in direct comparison to the pre-
vious plot-based approach, where a majority of coniferous
plots were located within uniform coniferous stands and
captured the homogenous nature of such stands without
inclusion of more heterogeneous coniferous components,
such as stand boundaries. A two-class (deciduous-conifer-
ous) modeling approach furthermore lent itself to inclusion
of objects with only marginally more coniferous than de-
ciduous basal area. This in turn resulted in reduced adjusted
R? values due to increased within-object variability. It
should be noted that an n-class modeling approach, where
n > 2, also has disadvantages. These include smaller object
numbers per class, along with reduced feasibility for oper-
ational applications due to more complex model fitting
requirements. Although a three-class approach therefore has
disadvantages when compared to a two-class scheme, there
was no definitive difference between two- and three-class
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model metrics. Deciduous adjusted R values ranged be-
tween 0.51 and 0.59 (two-class) and 0.52 and 0.62 (three-
class), while coniferous values ranged between 0.46 and
0.66 (two-class) and 0.47 and 0.67 (three-class). Adjusted
R? values for the mixed class in the three-class scheme
ranged between 0.43 and 0.74. These results indicated that
a simpler, two-class approach was well suited to the study
area, but that a three-class scheme remains an option to the
user, depending on operational implications.

Model fit statistics did not exhibit vast differences
among different object sizes, but generally did deteriorate
with increasing average object size. Except for the 5.632
ha/object result, with high adjusted R* values for coniferous
(R* ~ 0.66), deciduous (R* ~ 0.59), and combined models
(R> ~ 0.54), the general trend was for fit statistics to
become worse with increasing object size. This was true for
object sizes between 0.091 ha/object and 3.942 ha/object,
with a general decreasing trend in adjusted R? values and an
increasing trend in RMSE values. A definitive reason for the
increase in adjusted R* values in the case of 5.632 ha/object
was not evident. This increase was attributed to better
representation of BAF plot data at the larger object size
through inclusion of multiple BAF plots for per-object
modeling, while within-object variability remained ade-
quately small to obtain acceptable model fit statistics. Fur-
ther research is required to definitively address this issue.
The lack of distinct differences among average object sizes
also is an artifact of the hierarchical segmentation algo-
rithm. Minimization of within-object variance occurred at
the smaller average object sizes, while these smaller objects
form the building blocks for larger objects. Within-object
variance therefore already has been minimized at smaller
object size levels, with the hierarchical structure not further
contributing to reducing this within-object variance.

Model metrics for the operational Appomattox stands
were distinctly lower than those found in the case of seg-
mentation applications for the two-class scheme. Deciduous
adjusted R* and RMSE values for volume modeling were
0.44 and 63.56 m>/ha, while values for coniferous stands
were 0.48 and 55.61 m>/ha, respectively. Overall modeling
results were 0.42 and 62.36 m>/ha, which indicated that
segmentation has distinct advantages over current defined
stands in the study area. These trends are evident in Table 4,
with the modeling improvement due to segmentation being
attributed to definition of modeling units using the same
data source and units having lower within-object variance.
Although adjusted R* values for three-class coniferous vol-
ume (R?> ~ 0.73) and biomass (R*> ~ 0.70) were high
relative to other results, this was attributed to the current
stand definition being based on homogenous, even-aged
coniferous stands. This came at the cost of low adjusted R*
values for deciduous stands for volume (R*> =~ 0.46) and
biomass (R* =~ 0.46).

Adjusted R* was found to be a metric well suited to
model evaluation, especially considering a relatively large
number of height distribution variables (=7) needed to
explain the variability in the dependent variables. Adjusted
R? values of up to 0.59 (two-class deciduous volume), 0.67
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(three-class coniferous volume), and 0.59 (combined vol-
ume) were deemed acceptable given the variability associ-
ated with public forests in the Virginia Piedmont. Stands
often are mixed to a large degree, resulting in large with-
in-stand variation. Adjusted R* values for biomass were as
high as 0.62 (deciduous), 0.63 (coniferous), and 0.66 (com-
bined). Although no definitive trend was prevalent, adjusted
R? values were higher while RMSE values were lower in
most model cases for smaller average object sizes
(0.035-0.318 ha/object) as opposed to larger objects
(0.141-5.632 ha/object). Smaller objects have smaller with-
in-object variability with associated higher between-object
variance.

Evaluation of residual values for all models confirmed
model validity, with no alarming trends in residual values.
Although most plotted residuals were evenly distributed
around zero, with only a limited number of outliers, a slight
increase in residuals with increasing predicted values were
detected in some cases (deciduous and combined models).
This minor variance heteroskedasticity was attributed to two
main factors. Biomass models have been shown to have a
“fan-shaped” residual trend with increasing predicted val-
ues. This is especially true for predicted biomass values
greater than 100 Mg/ha (Parresol 1999). The biomass equa-
tions used to model tree biomass were based only on tree
diameter, and not on measured height values (Schroeder et
al. 1997). This is a common practice (Schroeder et al. 1997,
Parresol 1999), but could have contributed to poor residual
distributions due to independent variable differences be-
tween biomass equations and lidar-based biomass models.
Lidar data are inherently height-based data sources, while
most biomass models do not include height as an indepen-
dent variable. Volume and biomass modeling using loga-
rithmic transformations of the dependent and independent
variables were attempted, but the heteroskedasticity effect
was not substantially reduced.

Conclusions

Grid-cell volume and biomass modeling based on lidar
distributions have been implemented successfully by Means
et al. (2000) and Nasset (2002). These studies were limited
to coniferous species, but R* values upward of 0.90 bode
well for future lidar distributions studies. This study ex-
plored an extension of the grid-cell approach to unique
forest objects and a deciduous-coniferous forest mix. Hier-
archical, multiresolution segmentation results were used as
homogenous units for the extraction of lidar distributions,
while basal area plots were used as field data for model
fitting and validation. No distinct differences were found for
volume and biomass modeling attempts across increasing
object sizes (0.035-5.632 ha/object), although adjusted R*
values generally decreased and RMSE values generally
increased with increasing object size. This lack of distinct
differences in adjusted R values among object sizes means
that reducing lidar point spatial coverage had little effect
on modeling attempts, with potential implications for a



more sampling-oriented approach to lidar-based forest
inventories.

The lack of modeling differences across varying object
sizes furthermore was attributed to the hierarchical nature of
the segmentation algorithm, which resulted in small homog-
enous objects that served as building blocks for larger
objects. Within-object homogeneity already was minimized
at smaller average object sizes, resulting in no definitive
difference in modeling results as object size increased
through recombination of smaller objects. However, object-
based modeling efforts were distinctly better than those
found for existing, operational forest stands in the study
area. This was attributed to the larger within-stand height
variation in the case of existing stands when compared to
the variation found within homogenous objects.

Modeling results were very promising, even though co-
niferous and combined adjusted R? values for volume and
biomass were lower than those found in other published
studies. Lower coniferous R? values were attributed in part
to a smaller range of volume and biomass observed values,
as well to the inherent variability found in Virginia Pied-
mont forests. Adjusted R? values for deciduous objects were
higher than those found for a comparable, plot-level study in
the same area. This result indicated that an object-level
approach to deciduous volume and biomass modeling is a
potential improvement over plot-based approaches. High R*
values in the context of this study were unlikely, given that
volume and biomass modeling were performed by using
only height-related values. This was due to the nature of the
modeled field data, which were based on diameter-at-breast-
height (biomass) as well as height (volume). RMSE values
compared favorably with those found in other distributional
modeling studies. Low RMSE values indicated that models
could find applicability in an operational context, even
given low R? values.

Forward and Mallow’s Cp selection proved successful in
the reduction of independent variables from as many as 75
initial height distributional variables to the fewer than 10
used for final modeling. Further variable reduction through
correlation analysis proved critical to the process of reduc-
ing variables. Final model selection from all candidate mod-
els was based on Mallow’s Cp, adjusted R*>, RMSE values,
and model simplicity. All criteria proved useful and even
necessary to select a single best option from a large set of
Mallow’s Cp recombined variable models. Final variables
spanned the whole spectrum of possibilities, from general
mean and range height values to more abstract coefficient of
variation and SD-type variables. Both regular and canopy
cover percentiles also were well represented. The inclusion
of intensity variables was interesting since few studies
(Means et al. 1999, Brandtberg et al. 2003) have included
intensity values as part of forest biophysical modeling. The
wide range of selected variables indicated that sophisticated
lidar scanners that can record multiple returns and intensity
associated with each lidar hit might well be necessary for
effective modeling of variation in more complex forests.

Per-object volume and biomass modeling has the poten-
tial of constituting part of a complete lidar-based inventory.

Segmentation, volume and biomass modeling, and eventual
object-oriented classification could form a cohesive ap-
proach to forest inventory using remote sensing data, spe-
cifically lidar technology. Segmentation of lidar-derived
data has the benefit of establishing homogenous objects for
subsequent volume and biomass modeling, resulting in scal-
able units that can be conglomerated along with all associ-
ated per-object estimates. A variable forest stand could thus
be modeled at a more homogenous substand level. Although
this was not investigated, it is possible that stand-level
estimates will be more precise due to such a scalable,
integrated approach. Additionally, limited fieldwork will be
required for any given region. Potential fieldwork includes
limited segmentation verification, establishment of volume-
lidar distribution regression equations, and collection of
forest type information. Established distributional volume
and lidar equations could be applied for future stands and
derived objects, with periodic verification using either fixed
or variable plots. Models would have to be calibrated or
even redeveloped for different regions, as it seems that
results are geographically dependent (Means et al. 2000,
Makela and Pekkarinen 2001, Nasset 2002, Pekkarinen
2002). Issues that potentially are critical to operational
implementation include determination of the number of
plots required for proper model fitting and the ideal object
size for model development and application. The effect of
variations in lidar technology, e.g., single versus multiple
returns and the lack of intensity returns on most sensors, as
well as aspects related to methodology, also need to be
investigated. The lack of distinct differences in modeling
results among object sizes has shown that a limited lidar
point spatial coverage has significant potential in opera-
tional modeling of forest volume and biomass.
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