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Abstract

Pronunciation lexicons often contain pronunciation vasa This
can create two problems: It can be difficult to define thesée var
ants in an internally consistent way and it can also be difficu
extract generalised grapheme-to-phoneme rule sets frewiah
containing variants. In this paper we address both thesesss
by creating ‘pseudo-phonemes’ associated with sets ofeigen
tion restriction rules’ to model those pronunciations taa con-
sistently realised as two or more variants. By pre-proogsand
post-processing the lexicon appropriately, graphemghtmeme
algorithms that were not able to deal with pronunciatioriargs
previously can now be extended to incorporate variantdyeasi
without requiring changes to the standard algorithms. Viduewe
the effectiveness of this approach using the Default&Refihe
extraction algorithm, and apply the method to both the Ehgli
Oxford Advanced Learners Dictionary (OALD) and the Flemish
FONILEX pronunciation lexicon. We find that the approach-gen
eralises to different languages, is able to model phoneauizv
tion accurately and is able to identify inconsistent vasan pre-
existing lexicons.

Index Terms: pronunciation modelling, pronunciation variants,
grapheme-to-phoneme rules, pseudo-phonemes.

1. Introduction

Pronunciation lexicons often contain pronunciation vasa
words with the same orthography that are realised as diff@re-
nunciations in different contexts. These variants can oata
continuum ranging from generally accepted alternate waod p
nunciations to pronunciation variants that only occur mited
circumstances: in effect ranging from true homonyms toedial
and accent variants, to phonological variants based onietyaf
factors such as speaker and/or speaking style. It can beutiffi
to decide which of these variants to model, especially fiedént
levels of variation are to be kept distinct. While phonotzdiphe-
nomena (such as /r/-deletion, schwa-deletion or schwerting)
can be modelled as predictive rewrite rules, phonemic tranas
most often included in pronunciation lexicons as explittiérmate
pronunciations. Including explicit alternate pronunicias in pro-
nunciation lexicons introduces two challenges:

1. Itis often difficult to include variants in a consistentywa
When a lexicon grows through general usage (for example,
the evolution of the CMU pronunciation dictionary[1]) it
is easy to include one example of a variant as required for
a specific application, without including the entire vatian
family. For example, if (using ARPABET) both the pro-
nunciationdiy n k r iy s/and/iy ng k r iy s/are allowed for

the verb ‘increase’, then similarly, botty n k riy s t/and
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fiy ng k r iy s t/should be allowed for the word ‘increased’
in order for the dictionary to remain internally consistent

. A variety of techniques are available for the extractién o
grapheme-to-phoneme prediction rules from pre-existing
lexicons, including decision trees [2], pronunciation-by
analogy models [3] and instance-based learning algo-
rithms [4, 5]. Unfortunately, many of these techniques,
including Dynamically Expanding Context (DEC) [4] and
Default&Refine [6], experience difficulty in accommodat-
ing alternate pronunciations during the machine learning
of grapheme-to-phoneme prediction rules. For such tech-
nigues, the lexicon is typically pre-processed and prokRunc
ation variants removed prior to rule extraction. The later
a drawback when developing pronunciation models through
bootstrapping, a useful technique for the accelerated de-
velopment of pronunciation lexicons [7, 8]. Bootstrapping
systems utilise automated techniques to extract grapheme-
to-phoneme prediction rules from an existing lexicon and
apply these rules to predict additional entries, typicaily
an iterative fashion. These systems can have difficulty in-
corporating learning from pronunciation variants.

In this paper we address both of the above issues. In pride [8pr
we explored the incorporation of variants in a standard lyzage-
to-phoneme rule extraction algorithm through the genenatif a
‘pseudo-phoneme’ and an associated set of ‘generatiofictést
rules’ to model alternate phonemic pronunciations, anantegd
initial results obtained modelling the phonemic variationthe
Oxford Advanced Learners Dictionary (OALD) [10]. In this-pa
per we define the pseudo-phoneme model approach in further de
tail, verify the effectiveness of the method using both OA&RY
FONILEX [11], a large Flemish dictionary that includes sfgn
cantly more phonemic variation than OALD, and investigée t
applicability of the approach to identify inconsistent igaits in
a pre-existing lexicon. We focus on one typical instanceeda
learning algorithm, Default&Refine [6], but discuss howsthip-
proach generalises to other grapheme-to-phoneme frarkewor

2. Background: Default&Refine

The Default&Refine algorithm is an instance-based learalgg-
rithm that can be used to extract a set of grapheme-to-ph®nem
prediction rules from an existing pronunciation lexicont id
highly competitive in terms of both learning efficiency (tis the
accuracy achieved with a limited number of training exarsjpded
asymptotic accuracy when compared to alternative appes6.
The Default&Refine framework is similar to that of most
multi-level rewrite rule sets. Each grapheme-to-phoneuteaon-



sists of a pattern:
P Table 1:Examples of pseudo-phonemes generated from the OALD

(left context — g — right context) — p Q) corpus

whereg indicate the grapheme being predictédft context and Word Variants Pseudo- | New
right context indicate the left and right graphemic context re- phoneme | pronunciation
spectively, andp the phonemic realisation af. Rules are or- animate | aenihmay pi=ayllax | aenihmp; t¢
dered explicitly. The pronunciation for a word is generabee aenihmax®
grapheme at a time: each grapheme and its left and rightxtonte| delegate | dehlihgayty | pi=ayllax | dehlihgp: t¢
as found in the target word are compared with each rule in the dehlihgaxty
ordered rule set, and the first matching rule is applied. lens lehnz p2=9/|z I eh np;

During rule extraction, iterative Viterbi alignment is asto lehns
obtain grapheme-to-phoneme mappings, after which a kisyar | close klowz¢ p2=8||z klowps ¢
of rewrite rules is extracted per grapheme. The rule setiiseted klows¢

in a straightforward fashion: for every letter (graphenaejiefault

phoneme is derived as the phoneme to which the letter is most

likely to map. ‘Exceptional’ cases — words for which the exteel In practice, all words that contain two or more pseudo-
phoneme is not correct — are handled as refinements. The-smallphonemes are extracted from the training lexicon and theduse

est possible context of letters that can be associated hétiméxt phoneme combinations analysed. If a pseudo-phoneme combi-
most frequently occurring phoneme is extracted as a refimed r  nation (such ags-ps above) is realised as one or more specific
(The rule that describes the largest number of current erep phoneme combinationgeh-ih/ or /ih-aal) for all words in the

accurately is selected next.) Exceptions to this refinezlarg sim- training lexicon, theps-ps combination will always be expanded
ilarly represented by further refinements, and so forthilgato as these two phoneme combinations, and these only. If afepeci
a cascading rule set that describes the training set withplsden phoneme combination exists for some words in the trainirg le
accuracy. Further details can be found in [6]. con and not for others, more complex generation restrictites
are required. Fortunately the Default&Refine algorithm isllw
3. Modelling phonemic variation suited to extracting such rules from the pseudo-phoneméieom
nation information. The smallest possible rule is extrddtein-
3.1. Approach dicate the context in which a pseudo-phoneme combinatiog-is
Our approach to the modelling of explicit pronunciationiaats ~ alised as one phoneme combination or another. For exanmgle, t
utilises two concepts that we refer topseudo-phonemesdgen-  extracted rule~ps—, —ps— : eh-ih, ih-aa’ specifies that when-
eration restriction rulesrespectively. These are discussed in the €ver the two pseudo-phonemesandp, occur together in a word,
remainder of this section. in any graphemic context, only two variants are allowed, lgm
A pseudo-phoneme is used to model two or more phonemesexpanding the pseudo-phonemedeb-ih/and/ih-aa/, and these
that consistently occur as variant pronunciations of timeesaord. ~ combinations only. A more complicated rule, specifyingt s

In practise, we use the following process: we align the ingin ~ Should only occur ifp4 is followed by an ‘n” would be written
lexicon, extract all the words giving rise to pronunciatiariants as ‘—p3—, —pa — n : ehih,ih_aa’. Luckily the default rule is
from the aligned lexicon, and analyse these words one graphe typically sufficient; more complex rules are seldom reqire
at a time. Since the word-pronunciation pairs have alreanb The new rule extraction process consists of the following
aligned, there is a one-to-one mapping between each graphemsteps: We align the original training lexicon, generate tafe
and its associated phoneme. For each word, we consider anyPSeudo-phonemes and rewrite the aligned lexicon in terntiseof
grapheme that can be realised as two or more phonemes and maeW pseudo-phonemes. Next, we extract Default&Refine fates
this set of phonemes to a new single pseudo-phoneme. If 4 set othe rewrit_te_n Iexicc_)n, an_d extract genera_tion restrict_ldas_ based
phonemes has been seen before, the existing pseudo-pheneme O the original lexicon (in comparison with the rewritterizn).
already associated with this set — is used. Table 1 lists piem  We then use these two rule sets to predict the pronunciafitireo
of pseudo_phonemes generated from@ad.D corpus. Phonemes test word lists: standard Default&Refine prediction is UEEgen'
are displayed simplified to the closest ARPABET[12] symHdie erate a test lexicon specified in terms of pseudo-phonemeshea
‘¢’ symbol indicates phonemic nulls (inserted during alignthe ~ PSeudo-phonemes are expanded to regular phonemes agctardin
Once all pseudo-phonemes have been defined, the aligneitigrai  the generation restriction rules, resulting in the fina kesicon.
lexicon is regenerated in terms of the new phoneme set.

The generation restriction rules are used to restrict the-nu ~ 3.2. Evaluation and Results

ber of possible variants generated when two or more pseudo-|n order to evaluate whether the proposed approach is paicti

phonemes occur in a single word. For example the word ‘sécond 4 generalises to different languages, we model the poigtion
can be realised as two variarigseh k ih n d/and/s ih k aa n d/ variants occurring in two different lexicons:

According to the pseudo-phoneme generation process Hedcri
above, these two variants will be combined as a single prnun
ation: /s ps k ps n d/. However, this new pronunciation implies
four different variants, of whiclts ih k ih n d/and/s eh k aa n d/
are not included in the training lexicon. The generatiotrietfon
rules are used to identify and limit the expansion optiomsstach
cases, to ensure that the newly generated training lexicoodes
exactly the same information as the initial training lexico 2. FONILEX, a publicly available pronunciation dictionasf/

1. The Oxford Advanced Learners Dictionary (OALD) [10]
is a publicly available English pronunciation lexicon that
includes pronunciation variants. We use the exact 60,399
word version of the lexicon as used by Blasikal [2]. For
this set of experiments we do not utilise the part-of-speech
tags and predict pronunciations without stress assignment



Dutch words as spoken in the Flemish part of Belgium[11].
We use the exact 173,873-word pre-aligned version of the
dictionary as used by Hosét al [13].

Statistics with regard to the phonemic variation occurimthese
two lexicons are provided in Table 2.

Table 2:Phonemic variation in OALD and FONILEX

OALD | FONILEX
Number of pronunciations 60,399 | 173,873
Number of unique words 59,696 | 166,786
Remaining words if variants removed 59,001 | 160,284
Number of words with variants 695 6,502
Average pronunciations per variant | 2.01 2.09
Variant words a%% of unique words | 1.16% 3.90%

In all experiments we perform 10-fold cross-validationsédon a
90% training and 10% test set. We report on phoneme corigtne
(the number of phonemes identified correctly), phonemeracyu
(number of correct phonemes minus number of insertiong]etilv
by the total number of phonemes in the correct pronunciptod

report on the standard deviation of the mean of each of these m
surements, indicated hbyio. (If the mean of a random variable

is estimated fromn independent measurements, and the standard
deviation of those measurementsighe standard deviation of the
mean iso,, = ﬁ.)

3.2.1. Benchmark systems

In previous experiments in which Default&Refine was apptied
the OALD corpus [14], the first version of each pronunciatiani-
ant was kept and other variants deleted prior to rule extnact
Results for this approach are listed in Table 3 hsar. Before
applying the new approach, we evaluate the effect on preeliat-
curacy if all variants are simply removed from the trainiegiton
(as this is what in effect happens when variants are modsdpd-
rately using the pseudo-phoneme approach), and list tiétsés
Table 3 asho var. As can be seen, results are comparable, with
the variant-containing scores consistently somewhatiteeause
of the extra complexity introduced by variants. Comparageilts
are listed for the FONILEX corpus, retaining one variantidgr
training. During testing, results are slightly differefit fior test
words that have more than one variant, the first variant isisen
tently used { var firs}), or any variant is selected at randofnv@ar
randon). These systems are used as benchmarks to evaluate the e
fect of the new approach to variant modelling on the accuvéty
which both variants and non-variants can be predicted. The-a
racy of the Default&Refine benchmark systems are high, abean
seen by comparing with other results obtained in literatspecif-
ically using decision treeslfrees [2] and IB1-IG (B1-1G) [13].

3.2.2. Prediction of non-variants

First, we consider whether the additional modelling of tagants
may have a detrimental effect on the prediction of non-vesia
Using both the generated lexicon and the reference lexiaen,

best baseline system®ALD no var, FONILEX 1 vgrwith that
of the pseudo-phoneme systempsdudd, when measured using

Table 3:Predictive accuracy of different systems.

Approach Word Phoneme Phoneme

accuracy accuracy correct

010 10 10

OALD
dtrees [2] 76.92 - - - 96.36 -
1var 86.46 0.15| 97.41 0.03| 97.67 0.03
no var 86.87 0.16| 97.49 0.03| 97.74 0.03
FONILEX
IB1-IG [13] | 86.37 - - - 98.18 -
1varrandom| 92.03 0.06| 98.78 0.04| 98.87 0.01
1 var first 95.64 0.05| 98.36 0.01| 99.43 0.01

the reduced test set.

Results are listed in Table 4. We seée tha

the pseudo-phoneme modelling approach does not negatnsely
fluence the accuracy with which non-variants are predicted.

Table 4:The pseudo-phoneme approach does not have a detrimen-
tal effect on the accuracy with which non-variants are pceetil.
word accuracy (number of words completely correct). We also (Tested on test set without variants.)

Approach | Word Phoneme Phoneme

accuracy accuracy correct

J10 J10 J10

OALD
no var 86.93 0.16| 97.50 0.03| 97.75 0.03
pseudo 86.92 0.15| 97.50 0.03| 97.76 0.03
FONILEX
1var 95.54 0.06| 99.35 0.04| 99.42 0.01
pseudo 95.54 0.08| 99.33 0.03| 99.41 0.01

3.2.3. Prediction of variants

Given the modelling process, it is clear that the originairing
lexicon and the training lexicon rewritten using pseudofEmes
are equivalent. (This can be verified by expanding the reswrit
training lexicon with the same process used to expand théstes
icon, and comparing the expanded lexicon with the origireat v
sion.) The pseudo-phoneme approach therefore providezha te
nigue to encode pronunciation variants within the DefaBléfine
framework without requiring any changes to the standard-alg
rithm. While this in itself is a useful capability, we are reanter-
fgsted in the effectiveness with which the approach is abiein
eralise from variants in the training data. In order to estdiuthe
above, we count the number of variants occurring in the esfes
lexicon and the generated test lexicon according to the eurmib
variantscorrectlyidentified in the test lexicon, the number of vari-
antsmissingfrom the test lexicon, and the numberestravariants
occurring in the test lexicon, but not in the reference leric

On average we find that, for OAL38% of expected vari-
ants are correctly generated and &k of generated variants are
correct. For FONILEX41% of expected variants are correctly
generated and3% of generated variants are correct. In Table 5
we list the detailed results for three example cross-vatidesets
generate a list of all variants in the test set. We removeethes per lexicon. These results indicate that the pseudo-phersgm
words from the test word list, and compare the accuracy of the proach indeed generalises from the training data and casraten
a significant percentage of the variants occurring in theregfce

lexicon.



Table 5: Correct, missing and extra variants generated during
cross-validation. The percentage of expected variant$ \weae
correctly generated, and percentage of generated varidimds

of variants occurring in the test set 8in the case of OALD,
41% in the case of FONILEX). Of the variants generat&
were correct in the case of OALD, and%®3orrect in the case of
FONILEX. These results do not take into account that sombaef t

were correct are also displayed.

variants identified as incorrect may be legal variants nciutted
in the version of the lexicons used here.

Utilising the list of ‘extra’ variants as a candidate list for po-
tential missing variants, the dictionary can be evaluated bn-
guist to determine consistency. In the case of OALD%3df
variants on the candidate list were deemed legal by a lihguis
missed by the lexicon. This therefore provides a usefulfurahe
verification of the consistency of phonemic variation instixig

Correct Missing | Extra | % correct % correct
of expected| of generated

OALD

58 43 23 57.43 71.60

56 40 20 58.33 73.68

53 34 28 60.92 65.43

FONILEX

1214 1639 277 42.55 81.42

1117 1674 240 40.02 82.31

1145 1609 219 41.58 83.94

4. Verifying the consistency of variants

When the variants classified @&tra’ in the above experiment are
analysed, it soon becomes clear that some of the generatadtsa
may be legitimate variants that have simply not been indude
the original lexicon. For exampl@ALD contains the two pronun-
ciations/riy paetriats/and/riy p ae triy ey t slas variants of
the word ‘repatriates’, but allows only the single pronuaticin /r

iy p ae triat/as a pronunciation of the word ‘repatriate’. When the
prediction system generates the alternative pronunciétiy p ae
triyeyt/ itis flagged as erroneous. These two pronunciations
are close to each other, and will not necessarily affect thagity

of a speech recognition or text-to-speech system developied
these pronunciations. However, inconsistencies in thayrcia-
tion lexicon lead to unnecessarily complex pronunciatiadets,
and consequently, suboptimal generalisation.

In order to evaluate the consistency of the OALD lexicon, we
create a list of all variants flagged astra during the 10 cross-
validations, and have this list evaluated by a linguist. W that
249 words generatextra variants (498 additional variants were
generated in total). Of the 498 pronunciations, 251 weréval
pronunciations according to the OALD lexicon. However, lof t
remaining 247 pronunciations, 84 were identified as validhey
linguist, that is 3% of the variants classified @&xtramay indeed
be valid pronunciations, simply not included in the lexicdrhe
variants generated by the pseudo-phoneme approach trecpede
vides a good candidate list when verifying the consisterfcgno
existing lexicon. This process can be repeated a numbemesti
(each time including the new variants in the training setjlémtify
additional variants that may be valid.

5. Conclusions

In this paper we described a process that allows for the jrecor
ration of explicit phonemic variants in the Default&Refinga
rithm. This is done in a way that requires no adjustments ¢o th
standard algorithm, but rather utilises pre- and postgssing of
the training data and testing data. As the data is re-comfibto a
format expected by the standard algorithm, the same appzac
be used for other grapheme-to-phoneme learning algoritutis
as Dynamically Expanding Context (DEC).

Evaluated on both th®ALD and theFONILEX corpus, we
find that the incorporation of variants does not have a detniad

effect on the accuracy with which non-variants can be ptedic
In addition, the proposed approach is able to describe gl

occurring in the training set and identify a significant gerage

lexicons.
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