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Abstract  

 

This paper examines the skill of seasonal precipitation forecasts over Iran using one two-

tiered model, three National Multi-Model Ensemble (NMME) models, and two coupled 

ocean-atmosphere or one-tiered models. These models are, respectively, the ECHAM4.5 

atmospheric model that is forced with sea surface temperature (SST) anomalies that are 

forecasted using constructed analogue SST’s (ECHAM4.5-SSTCA), the IRI-ECHAM4.5-

DirectCoupled, NASA-GMAO-062012 and NCEP-CFSv2, and ECHAM4.5 Modular Ocean 

Model version 3 (ECHAM4.5-MOM3-DC2) and ECHAM4.5-GML-NCEP Coupled Forecast 

System (CFSSST). The precipitation and 850 hPa geopotential heights fields of the forecasts 

models are statistically downscaling to the 
 5.05.0   spatial resolution of the Global 

Precipitation Climatology Centre (GPCC) Version 6 gridded precipitation data, using model 

output statistics (MOS) developed through the canonical correlation analysis (CCA) option 

the climate predictability tool. Retroactive validations for lead times of up to 3 months are 

performed using the relative operating characteristic (ROC) and reliability diagrams, which 

are evaluated for above- and below-normal categories, defined by the upper and lower 75th 

and 25th percentiles of the data record, over the 15-yr test period from 1995/96 to 2009/2010.  

The skills of forecasts models are also compared with skills obtained by (a) downscaling 

simulations produced by forcing the ECHAM4.5 with simultaneously observed SST, and (b) 

the 850 hPa geopotential height NCEP-NCAR reanalysis data.  Downscaling forecasts from 

most models generally produce the highest skill forecast at lead-times of up to 3 months for 

autumn (OND) precipitation. For most seasons, a high skill is obtained from ECHAM4.5-
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MOM3-DC2 forecasts at a 1-month lead-time when models’ 850 hPa geopotential height 

fields are used as the predictor fields. For this model and lead time, the Pearson correlation 

between the area-averaged of the observed and forecasts over the study area for OND, NDJ, 

DJF and JFM seasons were 0.68, 0.62, 0.42 and 0.43, respectively. 
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Introduction  

Seasonal forecasts are possible over certain areas of the Globe since the seasonal-to-

interannual variability of such regions is related to predictable components of the climate 

system such as the El Niño-Southern Oscillation (ENSO). ENSO is the climate mode that 

contributes the most to seasonal forecasts skill (Goddard and Dilley 2005; Balmaseda and 

Anderson, 2009; Weisheimer et al., 2009). However, other parts of the Globe, for instance 

the Middle East, are not as strongly associated with the ENSO phenomenon (Ropelewski and 

Halpert, 1987, 1989). Notwithstanding, Nazemosadat and Coredy (2000) have documented 

an ENSO signal in Iran during the months of October through December (OND) and Barlow 

et al. (2002) reported that severe droughts (1998-2001) in central south Asia are related to a 

combination of the La Niña and unusually warm sea-surface temperatures (SSTs) in the west 

Pacific, which may have enhanced the regional dynamics of the warm pool there. 

Nazemosadat and Ghasemi (2004) reported that warm (cold) ENSO phases reduce (increase) 

the intensity and probability of drought (severe drought) during OND, particularly over the 

southern parts of Iran. However, the response of the boreal winter precipitation to ENSO 

events is generally weak. The linear relationship between ENSO and seasonal 

precipitation is weak over most parts of Iran. Pourasghar et al. (2012) reported that the 

interannual precipitation variability in the southern parts of Iran in autumn and early winter 

(late winter) is correlated with the Indian Ocean Dipole (the Mediterranean Sea). These 

studies suggest that the region of Iran is affected by a complicated combination of ENSO 

events, SSTs over the west Pacific and over the Indian Ocean.  Fallah-Ghalhary et al. (2009) 

reported that adaptive neuro-fuzzy inference system (ANFIS) can predict spring rainfall over 

the northeast region of Iran with reasonable accuracy. 
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Owing to these complex associations between Iranian seasonal rainfall variability and global 

SST patterns we will investigate the predictability of seasonal rainfall over the region by 

using state-of-the-art general circulation models (GCMs). GCMs have already been used 

extensively in seasonal forecasting globally (Sachindra et al., 2014a,b; Landman 2014; 

Francisco et al., 2013; Barnston and Mason, 2011; Barnston et al., 2010; Barnston et 

al., 2003; Landman et al., 2012; Landman and Bareki, 2012; Bartman et al., 2003; 

Tippett et al., 2003). Such models have also been proven useful for Iran (Tippett et al., 

2003; Tippett et al., 2005), but here we will expand on GCM modelling over the 

region by considering a wide range of dynamical forecasting systems.  

GCMs tend not to skillfully predict central southwest Asia’s winter precipitation 

(Tippett et al., 2003). However, statistical correction of GCM output have improved 

forecasts  in the region where the borders of Afghanistan, Pakistan and Tajikistan 

meet, but not much skill has been found along the southwest border of Iran (Tippett et 

al., 2003). Moreover, precipitation by the ECHAM4.5 GCM (Roeckner et al., 1996) 

had only produced low skill simulations over the central southwest Asia, but when 

observed upper-level winds were used as predictors in a statistical model, much 

improved results were obtained (Tippett et al., 2003). 

Iran is an area subject to climatic extremes with huge societal impact. For example, in 

1999 the severe drought in Iran affected more than 37 million people, and flooding in 

2001 and in 2002 affected about 1.5 million people (http://www.emdat.be/). 

Moreover, all of these disasters were associated with significant financial losses. 

However, very little evidence has thus far been presented in the literature on the 

possibility of predicting climatic extremes on a seasonal time scale over this region. 

 The effect of topography and lakes which are important to local weather may not be 

included in the GCMs. The role of the Middle East topography and neighboring seas 

including the Red Sea, Persian Gulf, Mediterranean Sea, Black Sea and Caspian Sea 

are important to seasonal precipitation of the Middle East. Statistical methods are able 

to improve the accuracy and usefulness of GCMs simulations. In this research, the 

state-of-the-art atmospheric and ocean-atmosphere coupled models are employed to 
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study the seasonal precipitation predictability over Iran. The forecasts from these 

models are empirically improved by downscaling the large-scale forecasts from these 

models to gridded precipitation fields through model output statistics (MOS; Glahn 

and Lowry, 1972; Wilks, 2011).  

Two fields of the GCM forecasts including precipitation and 850 hPa geopotential 

heights are used for precipitation prediction for the seasons in which significant 

precipitation occur over Iran. Advantages in statistically post-processing forecasts 

from GCMs and coupled GCMs are subsequently demonstrated. The National Multi-

Model Ensemble and coupled ocean-atmosphere models have not considered in the previous 

studies over Iran. 

  

2. Data, models, and methods  

2.1. Precipitation data 

The Global Precipitation Climatology Centre (GPCC) Version 6 gridded monthly 

precipitation data with a spatial resolution of 
 5.05.0  (Schneider et al., 2011; 

http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html) are used to calculate 3-month 

seasonal precipitation totals for Iran (Figure 1). The 3-month rainy seasons include October-

December (OND), November-January (NDJ), etc. through February-April (FMA) which 

cover the autumn, winter and spring seasons. About 85% of the annual precipitation over the 

study area (Lat:  N,40.25  toN75.23 
Long:  E)63.75  toE25.44 

occurs from October to 

April (calculated over the period from 1982-2010 using GPCC v6 precipitation data). Fig. 1 

shows the climatological mean of October to April total precipitation over the study area. 

The seasonal mean ranges from 100 mm (the central and eastern parts) to 800 mm (northern 

parts). Although the GPCC v6 precipitation data are available from January 1901 to 

December 2010, the period 1982/83 to 2009/10 is considered in this research throughout 

since this period is the common re-forecast period for all the global models to be tested. All 

the data sets in this research were extracted from the data library of the International 

Research Institute (IRI) for Climate and Society (http://iridl.ldeo.columbia.edu/).   

 

 

http://iridl.ldeo.columbia.edu/
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2.2. NCEP-NCAR reanalysis data 

The 850 hPa geopotential height data, representing the observed low level atmospheric 

large-scale circulation over the study area, are extracted from NCEP-NCAR reanalysis data 

(Kalnay et.al., 1996; http://www.cpc.ncep.noaa.gov/products/wesley/reanalysis.html). The 

relationships between observed circulation and precipitation fields over the study area is 

assessed and tested against the simulated circulation of the global models in order to form an 

improved understanding of the physical processes driving observed and predicted seasonal 

variability and how the models are able to capture these processes. The spatial resolution of 

NCEP-NCAR data is 2.5° x 2.5°.  

 

2.3. Atmospheric general circulation data 

Two re-forecast or hindcast sets of the ECHAM4.5 (Roeckner et al., 1996) atmospheric 

general circulation model are used in this research.  The first data set (available from January 

1950 to the present) is produced by forcing the ECHAM4.5 with simultaneously observed 

sea-surface temperature (SST) and consists of 24 ensemble members. The second data set 

available from January 1957 to Dec 2012 and is produced by forcing the model with SST 

anomalies that are forecast using constructed analogue SST’s (denoted ECHAM4.5-SSTCA; 

Van den Dool, 2007) and consists of 24 ensemble members. The ECHAM4.5-SSTCA is a 

two-tiered model.  

2.4. The hindcast  data of the National Multi-Model Ensemble  

The considered models from the NMME are the IRI-ECHAM4.5-DirectCoupled, NASA-

GMAO-062012 and NCEP-CFSv2 (National Research Council, 2010, Kirtman et al., 2014; 

http://www.cpc.ncep.noaa.gov/products/NMME/). Only the hindcast precipitation data of 

these models are extracted for the period 1982/83 to 2009/10. 

2.5. Coupled general circulation models  

The coupled ocean-atmospheric GCMs or one-tiered models to be considered are the 

ECHAM4.5 Modular Ocean Model version 3 (MOM3; Pacanowski and Griffies 1998) 

directly coupled to the ECHAM4.5 (denoted ECHAM4.5-MOM3-DC2; DeWitt 2005) with 

archived hindcasts available from January 1982 to July 2012, and a slab mixed layer 

(denoted ECHAM4.5-GML-CFSSST) for the tropical western Pacific, Indian, and Atlantic 
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Oceans with prescribed SST forecasts from the National Centers for Environmental 

Prediction’s (NCEP) Coupled Forecast System (CFS; Saha et al., 2006) in the central and 

eastern tropical Pacific, with hindcasts available from January 1982 to October 2012. These 

coupled model forecast sets consist of 12 ensemble members each. 

For the ECHAM4.5 forced with predicted SST, the three NMME models and ECHAM4.5-

GML-CFSSST, three forecast lead times are to be considered for model initialization near the 

beginning of the month. For a one month lead time there are three weeks from the issuance of 

the forecast to the beginning of the forecast season. For example a one month lead-time 

forecast for OND is produced in the first week of August and for a two and three month lead-

time forecasts are produced beginning July and June, respectively. For the ECHAM4.5-

MOM3-DC2 system used here, there are at least 4 weeks between the production of the 

forecast and the first month of the forecast season. For example, OND forecasts at a 1-month 

lead time are produced near the end of July, 2-month lead-time forecasts at the end of June 

and 3-month lead-time forecasts at the end of May.  

The precipitation and 850 hPa geopotential height data sets of the coupled models, 

ECHAM4.5, and ECHAM4.5 SSTCA are separately considered as the predictor field to 

construct retroactive downscaled forecasts (Landman et al., 2012). 

 

2.6. Model Output Statistics  

In this research, the method of model output statistics (MOS; Wilks, 2011) is used to derive 

statistical equations between global model hindcasts and precipitation over Iran. The MOS 

approach reduces model biases and corrects global model hindcasts toward more probable 

outcomes.  The GPCC data set over the study area (Lat:  N,40.25  toN75.23 
Long: 

 E)63.75  toE25.44 
is considered as the predictand field in the MOS. This area is also 

considered as the predictor field when simulated or forecasted precipitation from the models 

is used in the MOS; however, a prediction area between N60 and N12 
and from 

 E85  toE22 
is considered when observed, simulated or forecasted 850 hPa geopotential 

height is used. The domain for 850 hPa geopotential height is selected according to previous 

works such as Raziei et al. (2012) and references therein. Canonical correlation analysis 

(CCA, Barnett and Preisendorfer, 1987) is used as the statistical technique to develop the 
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MOS equations. CCA is employed to set up the statistical linkages between large-scale 

global model hindcasts and gridded precipitation over Iran.  CCA has already been widely 

applied to perform statistically downscaling as a forecast technique (Landman et al., 2012 

and references therein). Both predictor and predictand fields are to be pre-filtered by 

principal components analysis. Pre-filtering and orthogonalization of predictors and 

predictands prior to CCA have been recommended e.g. by Barnett and Preisendorfer (1987) 

and Barnston and Ropelewski (1992). The optimal number of modes to be retained in the 

CCA equations is determined using retroactive validation (Troccoli et al., 2008; Landman et 

al., 2012). To estimate true forecast skill, a set of data that are independent of the training 

period is predicted. Such validation mimics true operational forecasting when no prior 

knowledge of the future seasons is available. For example for OND precipitation, the MOS 

models are first trained using only the years from 1982 up to and including 1995, a 14 yr 

training period, and then a prediction is subsequently performed for the next year (1996). 

Then the MOS models are re-trained using the second training period from 1982 up to and 

including 1996, a 15 yr training period, and then a prediction is subsequently performed for 

the 1997.  This procedure is repeated until the last year (2010) of the data has been predicted 

using MOS models trained from 1982 up to and including 2009, resulting in 15 years of 

independent forecast data.      

Cross-validation using a 5-yr-out window is considered for the training period. The various 

cross-validation training periods are each associated with a different number of years. Error 

variances for each period are uniquely calculated and these variances are used to 

subsequently calculate the probabilistic downscaled hindcasts. The ROC (Relative Operating 

Characteristic; Mason, 1982; Marzban, 2004; Wilks, 2011) and reliability diagrams (Hamil, 

1997; Wilks, 2011) are used for verification of the probabilistic hindcasts in order to 

determine skill. The ROC indicates whether the forecast probability was higher when an 

event occurred compared to when it did not (Troccoli et al., 2008). 

The Pearson and Kendall’s tau correlations are used to estimate the deterministic forecast 

skill parameters. Using bootstrap re-sampling, the significance of the Pearson and Kendall’s 

tau correlations are evaluated for the independent test period. All these methods are used to 

find the association between large-scale atmospheric circulation and precipitation in order to 
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improve our understanding of the physical mechanism responsible for seasonal precipitation 

over Iran.  

The MOS equations and forecast skill are run using the Climate Predictability Tool (CPT) of the IRI 

(http://iri.columbia.edu/our-expertise/climate/tools/cpt/).  

 

3. RESULTS 

Retroactive forecasts validation  

3.1. ROC scores 

The downscaled simulations of atmospheric ECHAM4.5 GCM and forecasts systems are 

assessed over the region in order to indicate the strengths and weaknesses in the considered 

GCMs and to determine which season is the most predictable by using the forecast systems 

described here. ROC scores are calculated for five 3-month seasons and for all GCMs. The 

verification results for the above- and below-normal categories are used since there is usually 

little skill to be derived from predicting the near-normal category (Van den Dool and Toth 

1991). The above- and below-normal categories are defined by respectively the upper and 

lower 75th and 25th percentiles of the data records. Table 3 and Figure 2 indicate the ROC 

scores for the above- and below-normal categories for OND, NDJ, DJF, JFM, and FMA 

seasons for ECHAM4.5 GCM and GCM forecasts for the 15-year retroactive test period 

(1995/96-2009/10) when the models’ precipitation field is considered as the predictor field. 

The skill of the forecasts of ECHAM4.5-SSTCA and ECHAM4.5-GML-CFSSST is low in 

comparison with the others. All models have been found to produce high scores for both 

categories for OND at lead-times of up to 3 months with ECHAM4.5-SSTCA being the 

exception. Therefore, the seasonal OND precipitation over Iran is more predictable than the 

other seasons. A possible explanation is the significant linear correlation between Niño3.4 

SST and OND precipitation over the larger part of Iran (Figure 3). Figure 3a indicates that 

there is a significant positive correlation between Niño3.4 SST and OND precipitation over 

the central, north-eastern and western areas of Iran. The linear association between Niño3.4 

SST and precipitation of the other seasons is weak and insignificant for the most part. The 

ROC scores for the below-normal category for FMA season for ECHAM4.5-SSTCA model, 

which is based on the SST forecasting at 1 lead-time is high because of increasing correlation 

values between Niño3.4 SST and FMA precipitation in comparison with DJF and JFM 
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seasons. Figure 4 shows the composite maps of moisture transport and streamlines at 850 hPa 

geopotential height for the seasons considered. One of the reasons for the increasing 

correlation values between Niño3.4 SST and FMA precipitation is that moisture transport to 

the northern half of Iran increases during April as compared with earlier two months. The 

main source of the supplied moisture is mostly located over the eastern parts of the 

Mediterranean Sea (Fig. 4).  

Figure 5 shows ROC scores differences between ECHAM4.5 simulation and six forecast 

systems for five 3-month seasons. This figure indicates that most of the models are better 

able to discriminate below-normal seasons from the rest of the seasons than they are at 

discriminating above-normal rainfall from the rest of the seasons since most of the 

differences are positive. During the 15-yr test period, at the end of the predicted calendar 

years, the Niño3.4 SST is < -0.5 for 7 of the 15 yr for all seasons, and >+0.5 for 2, 3 and 5 

years  for FMA, JFM and the first three seasons, respectively. Therefore, there were more 

La-Niña years during the test period. A possible explanation for higher ROC scores for 

below-normal seasons is the association between cold event years and observed dry seasons 

over the study area, similar (although in opposite sense) to what has been found for 

Australian and South African rainfall variability (Power et al., 2006; Landman et al., 2012). 

For DJF, NCEP-CFSv2 has been able to produce the highest ROC scores among all models 

at a 1-month lead-time (Figure 5). Figure 5 indicates that for both categories of JFM season, 

the ECHAM 4.5 simulation has been able to produce higher ROC scores than all forecast 

systems.  On the other hand, for NDJ for above- and below- normal categories, IRI-

ECHAM4.5-DirectCoupled, NASA-GMAO-062012, NCEP-CFSv2, and ECHAM4.5-

MOM3-DC2 have been able to produce higher ROC score than the ECHAM4.5.  

Table 2 and Figure 6 indicate the calculated ROC scores for five 3-month seasons and for 

NCEP-NCAR data, ECHAM4.5, ECHAM4.5-MOM3-DC2, ECHAM4.5-GML-CFSSST, 

and ECHAM4.5 SST CA when 850 hPa geopotential heights are considered as the predictor 

field for the 15-year retroactive test period (1995/96-2009/10). The OND season is again 

found to be the most predictable. The ECHAM4.5-MOM3-DC2 produced the highest ROC 

scores at a 1-month lead time for all season except for FMA season. Figure 7 shows the 

difference between NCEP-NCAR data and ECHAM4.5-MOM3-DC2, ECHAM4.5-GML-

CFSSST, and ECHAM4.5 SST CA for all lead times and seasons considered. The forecast 
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systems have produced scores close to NCEP-NCAR for both categories of NDJ and in 

particular for below-normal.  On the other hand, the coupled models have no success for 

FMA season in particular for the above-normal category. Figure 7 confirms that ECHAM4.5-

MOM3-DC2 is generally better than the others except for below-normal FMA. Therefore, 

ECHAM4.5-MOM3-DC2 can be considered as the best model. 

 

3.2. Reliability Diagram  

The obtained ROC scores indicate that high scores are generally obtained from ECHAM4.5-

MOM3-DC2 forecasts for a 1-month lead-time when using the 850 hPa geopotential height 

fields as predictor field. OND and FMA are the seasons of respectively the highest and 

lowest predictability. For further discussion, we will consider this coupled model for OND, 

DJF and JFM when using the 850 hPa geopotential height field as predictor and NDJ when 

precipitation is used as predictor at a 1-month lead-time.  

Figure 8 shows reliability diagrams at a 1-month lead time for these seasons. Also, weighted 

least square regression lines for two categories (above- and below-normal) are shown. The 

frequencies histograms of wet-dry forecasts are presented in probability intervals of 10%, 

starting at 5%, and explain how strongly and frequently the issued forecasts depart from the 

climatology probabilities. Also, the means of the forecasts probabilities and observed relative 

frequencies are presented in x- and y- axes, respectively.    

In Fig. 8a, for above-normal OND rainfall, the forecast probabilities are higher than the 

observed relative frequencies, implying that observed wet OND precipitation occurs less 

frequently than predicted  (over-forecasting).  

On the other hand, for OND dry condition, Fig. 8e indicates under-confidence. In this case 

the forecast have high resolution, but poor reliability (Troccoli, et al., 2008).    In Figs. 8a and 

7e, the frequencies histogram indicate some sharpness since the peak of histogram for  wet 

and dry OND season are in the intervals 25%-35%, and 35%-45%, which are near the 

climatology probability of 25%. The mean of above-(below-) normal precipitation occurred 

in 20% (30%) while the mean for forecast probabilities is 29% (28%).  

The forecast probabilities of NDJ are overconfident and the observed relative frequencies are 

in the intervals 25%-35%, and 35%-45% which indicate some sharpness (Fig. 8b).  The mean 
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of above-normal precipitation for NDJ occurred in 24.7% while the mean for forecast 

probabilities is 26.3%.  

Fig. 8f indicates very slight overconfidence for below-normal NDJ and the slope is close to 

unity so that the mean of the below-normal precipitation season and forecast probabilities are 

24.7% and 25%, respectively. 

Figs. 8c and 8g indicate that the forecast probabilities of DJF are more than the observed 

relative frequencies, implying that observed wet-dry DJF precipitation occurs less frequently 

than predicted (over-forecasting or wet bias) and the frequency histogram of dry DJF 

indicates some sharpness since the histogram of dry DJF are in intervals 25%-35% and 35%-

45%, which are near the climatology probability of 25%. The mean of above- (below-) 

normal precipitation occurred in 22.9% (27.2%) while the mean for forecast probabilities is 

28.2% (28.9%).  

Figs. 8d indicates that the forecast probabilities of wet JFM are more than the observed 

relative frequencies, implying that observed wet JFM precipitation occurs less frequently 

than predicted (over-forecasting or wet bias). The mean of above-normal precipitation for 

JFM season occurred in 21% while the mean for the forecast probabilities is 25%. 

On the other hand, Fig. 8h indicates that the forecast probabilities of dry JFM season are less 

than the observed relative frequencies, implying that observed dry JFM precipitation occurs 

more frequently than predicted (under-forecasting). The mean of below-normal precipitation 

for JFM occurred in 32% while the mean for forecast probabilities is 27%. Also, the 

histograms in Figs. 8d and 8h indicate some sharpness.  

Therefore the reliability results are in general agreement with the ROC scores.  

 

 

3.3.  Non probabilistic forecast skill 

Figure 9 shows the area-averaged and then normalized observed  OND, NDJ, DJF, JFM 

precipitation indices over the study area, versus 1-month lead time retroactive forecasts 

obtained by downscaling the ECHAM4.5-MOM3-DC2 predictions to Iranian gridded 

precipitation. The Pearson correlation and Kendall’s tau as non-probabilistic skill estimates 

indicate the association between the area-averaged time series of the observed and forecasts 

(Figure 9). The bias-corrected and accelerated bootstrap confidence interval, or BCa intervals 
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(Efron and Tibshirani, 1993, Wilks 2011) for 90% and 95% for Pearson correlation and 

Kendall’s tau for the OND, NDJ, DJF, JFM seasons are shown in Table 3. The BCa indicates 

that Pearson correlation is statistically significant for OND, NDJ and JFM (the corresponding 

lower confidences interval are more than zero). The BCa of the Kendall correlation is 

statistically significant for OND and JFM seasons.  

The seasonal area-averaged NDJ, DJF and JFM observed precipitation in 2000, 2001 and 

2008-2010 as dry years are associated with La Niña events. The sign of the area-averaged 

precipitation during these (3 seasons x 4 La Niña events) 12 cases are captured by 10 of the 

forecasts, indicating some skill during La Niña years for winter boreal variability over Iran. 

On the other hand, the skill of the forecasts for DJF and JFM is low during week La Niña and 

natural years in 1996 and 1997, respectively.  

 

3.4.  CCA maps 

The 850 hPa geopotential height data of NCEP-NCAR is used as the predictor in place of the 

forecasted low-level height fields of the ECHAM4.5-MOM3-DC2 to check whether or not 

this model reproduces the relationship between the geopotential height data of NCEP-NCAR 

and precipitation. For simply comparing NCEP-NCAR data and ECHAM4.5-MOM3-DC2 

only the first principal component is considered as the mode to be retained in the CCA 

equations in the retroactive test for both ECHAM4.5-MOM3-DC2 and NCEP-NCAR.  

Figure 10 shows the predictor spatial loading (XCCA) of the first CCA mode for four 

seasons for NCEP-NCAR data and ECHAM4.5-MOM3-DC2. Fig. 10a and Fig. 10b indicate 

the spatial loadings are similar for both NCEP-NCAR and ECHAM4.5-MOM3-DC2, and the 

reason for the skill of this coupled model in predicting precipitation during OND is because 

the model is able to reproduce the NCEP-NCAR leading pattern.  

Comparing Fig 10.c and Fig 10.d shows different spatial loading over the north-west and 

suggests that the ECHAM4.5-MOM3-DC2 coupled model is not really able to reproduce 

NCEP-NCAR leading pattern and hence the degrading forecast skill for NDJ.  

Also, the ECHAM4.5-MOM3-DC2 coupled model is not really able to reproduce NCEP-

NCAR leading pattern for DJF and JFM (Figs 10.e-Figs 10.h).  
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Discussion and Conclusions 

Seasonal precipitation forecast skill over Iran has been investigated using forecasts from six 

forecast systems for five 3-month seasons. These models are statistically downscaled and 

compared over a retroactive period of 15 years. For most models, the season with the 

highest skill forecast at lead-times of up to 3 months is OND. One reason for this 

predictability is that OND precipitation is linearly associated with ENSO events, especially 

with cold events, over most of Iran. A low skill is produced from most models for all lead-

times for the remaining seasons except for below-normal FMA when the models’ precipitation is 

considered as the predictor field. However, NCEP-CFSv2 has been able to produce the highest 

ROC scores among all models for winter precipitation (DJF) at 1-month lead-time because the 

ROC scores of this model are higher than those found for ECHAM4.5. For most seasons, a 

high skill is obtained from ECHAM4.5-MOM3-DC2 forecasts at 1-month lead-time when 

models’ 850 hPa geopotential heights are used as the predictor field. The 850 hPa 

geopotential heights are generally a good predictor for most seasons. The skill of all 

forecasts for below normal is more than found for above-normal which indicates some skill 

during La Niña years. Although the response of DJF and JFM precipitation to ENSO events 

is week over most part of Iran, ECHAM4.5-MOM3-DC2 indicates high skill for these 

months at 1 month lead-time. For this model at a 1-month lead-time when models’ 850 hPa 

geopotential heights are used as the predictor field, there is a significant Pearson correlation  

between the area-averaged of the observed and forecasts over the study area for OND, 

NDJ, DJF and JFM seasons that are respectively 0.68, 0.62, 0.42 and 0.43. This result 

suggests that such a coupled model is able to improve Iranian precipitation forecast. The 

ECHAM4.5-MOM3-DC2 coupled model reproduces the relationship between the heights 

and precipitation correctly for OND. However, this coupled model is not really able to 

reproduce the physical mechanism of the NCEP-NCAR model for NDJ, DJF and JFM 

seasons and hence the highest skill is restricted to OND.   

The paper has demonstrated that seasonal rainfall over Iran is predictable at lead-times of a 

few months. However, predictability is mainly restricted to OND when ENSO states have 

been found to be strongly linked to Iranian rainfall variability. Notwithstanding, the OND 

season is of great significance for various agricultural practices such as dry-land cropping 

since dry-land farmers know that in order to survive financially they most likely would 
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have to take advantage of good OND rainfall seasons in order to offset dry seasons. Using 

forecasts from systems such as those presented and tested here should thus be able to aid 

such agricultural practices. 
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