
Detecting settlement expansion in South Africa using a

hyper-temporal SAR change detection approach

W. Kleynhansa,b,d, B.P. Salmonb,c, J.C. Olivierc

aDepartment of Electrical, Electronic and Computer Engineering, University of Pretoria,
South Africa.

bRemote Sensing Research Unit, Meraka Institute, CSIR, South Africa.
cSchool of Engineering, University of Tasmania, Australia

dVizCenter, San Diego State University, USA.

Abstract

Recent times have seen a significant increase in the amount of readily avail-
able SAR data, with many current and historic SAR data holdings now
adopting an open distribution policy. As more regular SAR observations
are becoming available, the use of a hyper-temporal SAR change detection
framework (utilizing a stack of potentially hundreds of SAR images) is now
becoming significantly more feasible. A relevant use case is the detection
of new informal settlements in South Africa. Here, hyper-temporal change
detection has been shown to be very effective but has been limited to coarse
resolution optical satellite imagery only. In particular, it has been found that
for optical data the Temporal Autocorrelation Change Detection (TACD)
method is able to effectively detect the formation of new informal settlements
using hyper-temporal MODIS time-series data. In this paper, the TACD is
modified for the use of coarse resolution hyper-temporal SAR data for the
detection of new informal settlements. It is shown that by using a hyper-
temporal approach to detecting these new informal settlements, a higher over-
all accuracy was achievable when compared to standard bi-temporal change
detection. A dataset of ENVISAT Advanced Synthetic Aperture Radar im-
ages over the study area was used to create a hyper-temporal time-series of
backscatter values for each of the pixels in the study area. It was found that
the proposed method achieved change detection accuracies of 87% at a false
alarm rate of less than 1% with bi-temporal SAR change detection achieving
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a change detection accuracy of 70% at an approximate 1% false alarm rate.

Keywords: change detection, SAR, time-series, hyper-temporal,
settlements

1. Introduction

SAR data are becoming increasingly easier to come by as many current
and historic SAR data holdings now adopting an open distribution policy.
An example of this is historic ENVISAT Advanced Synthetic Aperture Radar
(ASAR) and Sentinel-1 data holdings . The Sentinel-1 satellite, for example,
is potentially able to map the global landmasses in the Interferometric Wide
swath mode once every 12 days and this reduces to a 6 day exact repeat cycle
at the equator when both Sentinels are operational [1]. As more regular SAR
observations are becoming available from new and historic SAR satellites, the
use of a hyper-temporal SAR change detection framework (utilizing a stack
of potentially hundreds of SAR images) is now becoming significantly more
feasible [2]. A relevant use case is the detection of new informal settlements
in South Africa which is one of the most pervasive forms of land-cover change
in many developing countries. [3] These new developments are mostly driven
by human migration and socio economic factors that are constantly changing
across the African continent and often leads to settlements occurring infor-
mally in areas that were previously covered by natural vegetation.

Detailed mapping of settlements are usually done by analysts digitizing fea-
tures from aerial or high resolution satellite images. These features are then
utilized to support spatial planning and need to be updated regularly (at
least every two years). Updating maps over large areas using manual digitiz-
ing is slow and costly and many agencies, especially in developing countries
are constrained due to finite resources which results in feature datasets be-
ing outdated, while only a small percentage of the area actually experienced
change. Methods that can rapidly indicate areas having a high probability
of change is thus very valuable to an analyst as this can be used to direct
their attention to high probability change areas for further evaluation using,
for example, higher resolution imagery of the area. By using such a targeted
approach, an increase in mapping efficiency of up to ten times has been ob-
served compared to a complete re-extraction [4].
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In this paper we therefore focus on the development of automated change
detection methods based on hyper-temporal satellite imagery to improve the
productivity of detailed mapping efforts. Satellite time series data has proven
to be an effective data source for change detection [5, 6, 7, 8] and in partic-
ular, time series analyses of hyper-temporal optical satellite data has been
successfully applied for land cover change detection in South Africa specif-
ically related to the monitoring of human settlement expansion. In [9], a
Neural network based post classification change detection approach was used
to detect when land cover conversion takes place from natural vegetation to
settlement classes. In [10], MODIS time-series data was modeled as a triply
modulated cosine function and an Extended Kalman filter was used to track
the parameters of the model and declare change based on parameter behavior.
In [11], the use of Page’s cumulative sum (CUSUM) test was proposed as a
method to detect new settlement. An autocorrelation function (ACF) change
detection method was recently shown to detect the development of new hu-
man settlements in South Africa [3]. This method uses MODIS time-series
data, which have previously been shown to be separable (distinguishable) for
the natural vegetation and settlement land cover classes considered in this
study [12]. The method uses the ACF of a MODIS time-series to provide an
indication of the level of time-series stationarity (by considering the stability
of the time-series mean and variance over time) which is then consequently
used as a measure of land cover change.

In the original formulation of the ACF approach [3], a single pixel’s entire
time-series for a single band (spanning eight years) was used as input. A
change metric was then calculated by considering the properties of the ACF
of the time-series. When the resulting change index was compared to a
threshold value, a per-pixel based change alarm resulted. In this paper the
ACF approach is extended for the use of hyper temporal Synthetic Aperture
Radar (SAR) as input as opposed to optical time-series data to produce a
change alarm. SAR has been shown in previous studies to be useful in the
detection of human settlements [13, 14, 15, 16] but these studies focused
mostly on the use of single image processing as opposed to hyper tempo-
ral analysis. In this study, it is postulated that hyper-temporal SAR data
would be very useful in the detection of new and expanding settlements as
SAR reflectance in the temporal domain would be sensitive to changes from
natural vegetation to settlement land cover types. Another important con-
sideration in using SAR over multi spectral optical data, is that the detection
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of settlements in areas that are mostly covered by natural vegetation using
hyper-temporal optical data is mostly driven by the change in the vegetation
seasonal time-series. In many cases, a large reduction in natural vegetation
due to, for example, clear-cutting and vegetation removal would have a sim-
ilar change in the hyper-temporal profile than the change to settlement and
these types of changes would typically result in false alarms. In the case of
using hyper-temporal SAR data, the temporal profile, especially with HH
polarization will result in significant changes when a change occurs from nat-
ural vegetation to settlement due to the formation of man-made structures.

The objective of this paper is to extend on the original formulation of the ACF
method to a robust change detection method that utilizes hyper-temporal
SAR data as input that is able to detect the formation of new informal set-
tlements in areas that are typically covered by diverse natural vegetation.
The detected changes should then be used to alert operators to areas of pos-
sible changes which could thereafter be validated, and the necessary maps
updated, using high resolution imagery. The reason for using high resolution
imagery as a secondary step is not only to validate whether or not change
has occurred but also to make sure that digitization error is kept to a min-
imum when determining change vectors. Importantly, the false alarm rate
should be low (≤ 1%) as the area on which the change algorithm is run is
large and the validation of a large number of false alarms could be costly and
time consuming. The hyper-temporal change detection approach used in this
paper is also compared to a standard bi-temporal [17, 18] change detection
approach by using imagery pre and post the change event. It was found
that using a stack of SAR images and a hyper temporal change detection
formulation has a significant increase in the overall accuracy when compared
to the bi-temporal approach.

This paper is organized as follows: A description of the data is given in
section 2. The methodology section, detailing the adaption of the temporal
ACF for SAR data is given in section 3. Results are presented in section 4
followed by concluding remarks in section 6.
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2. Data Description

2.1. Study Area

The study area considered in this study was the Gauteng province of
South Africa, which is located in northern South Africa as indicated in figure
1. A total area of approximately 17000 km2 (centered around 26◦07′29.62′′S,
28◦05′40.40′′E) was considered. A total of 158 ASAR Wide-Swath HH im-
ages with a pixel spacing of approximately 75 m was obtained for the period
2005/01 to 2011/01. A dataset of no-change pixel time-series (n=180) were
identified by means of visual interpretation of high resolution Quickbird im-
ages in 2011 and 2005 respectively. The 2011 imagery over the study area
were compared to that of 2005 and no-change areas were able to be rapidly
determined. There were also 180 examples of confirmed settlement devel-
opments during the study period that were obtained by means of visual
interpretation of high resolution Quickbird images in 2011 and 2005 respec-
tively. All settlements identified in 2011 were referenced back to 2005 and
all the new settlements were digitized using the high resolution data and
a subsequent change polygon was created. By overlaying this change poly-
gon with the ASAR image, all pixels that had an overlap of at least 70%
with the change polygon were included in the change pixel dataset. The
no-change dataset was split into a test (n=90) and unseen (n=90) dataset.
The test dataset was used to determine the threshold values for both the
hyper-temporal and bi-temporal change detection methods and constituted
of only no-change examples.

2.2. Data processing

The entire stack of 158 images were radiometrically calibrated by making
use of the orbital information associated with each image, each image was
also geocoded. Images were selected so that the majority of the study area
were covered by each ASAR image. In the event that a specific area was
not covered by an image, temporal spline cubic interpolation was used to
infer an estimated HH backscatter value for that specific date. It should
be noted that on average, time series missing values was below 8% of the
total time series. Apart from missing value estimation, no additional spatial
or temporal filtering was done. The reason for this was to determine the
worse case accuracy of the method based on the addition of all possible data,
with the method not being influenced by, for example, the specific spatial
or temporal filtering method used. Figure 2 and 3 shows two examples of
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Table 1: Summary of data used for this study

Platform Envisat
Instrument Advanced Synthetic Aperture Radar

Geometric resolution ± 150m × 150m
Pixel spacing ± 75m × 75m
Incident Angle 15 - 45 ◦

Polarization HH
Period 2005/01 to 2011/01

# Observations 158

change and no-change areas respectively. Figure 4 shows how a pixel time-
series was generated using the ASAR image stack with figure 5 showing the
SAR HH backscatter time-series for the period 2005/01 to 2011/01 of the
change (right) and no-change (left) pixel example.

3. Methodology

3.1. Temporal ACF Change detection (TACD) method

The Temporal ACF change detection (TACD) method proposed in [3]
was developed specifically for the use of MODIS time-series data and uses
a two stage approach. Firstly, the band, lag and threshold selection is done
using a simulated change dataset together with a no-change dataset. Second,
the aforementioned parameters are used in an unsupervised manner to detect
change. Assume that a MODIS time-series is expressed as

X = {Xn}n=Tn=1 , (1)

where Xn is the observation from an arbitrary spectral band at time n and T
is the number of time-series observations available. The ACF for time-series
X can then be expressed as [3]

R(τ) =
E[(Xn − µ)(Xn+τ − µ)]

var(X)
, (2)

where τ is the time-lag and E denotes the expectation. The mean of X is
given as µ and the variance, which is used for normalization, is defined as
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var(X). The mean and variance of the time-series of X in (2) is required
to remain constant through time to determine the true ACF of the time-
series. The inconsistency of the mean and variance typically associated with
a change pixel’s non-stationary time-series becomes apparent when analyzing
the ACF of the time-series. The change metric was defined in [3] as the
temporal correlation at a specific lag (τ) given as

R(τ) = δτ . (3)

Defining a change threshold (δ∗τ ), a change or no-change decision was
made as

Change =

{
true if R(τ) ≥ δ∗τ
false if R(τ) < δ∗τ

(4)

The value of τ as well the threshold value (δ∗τ ) was determined by using sim-
ulated change and no-change datasets after which the resulting parameters
were used to run the algorithm in an unsupervised manner for the entire
study area [3].

3.2. SAR Temporal ACF (SAR-TACD) method

The TACD framework proposed in [3] was developed and tested specifi-
cally for optical data, a new framework for hyper-temporal SAR time-series
data, and, more specifically, ASAR WSM HH backscatter hyper-temporal
input data is formulated as follows.

Assume that a SAR time-series is expressed as

XSAR = {XSAR
n }n=Tn=1 , (5)

where XSAR
n is an HH intensity ASAR observation at time n and N is the

number of time-series observations available. The ACF for time-series XSAR

can then be expressed as

RSAR(τ) =
E[(XSAR

n − µ)(XSAR
n+τ − µ)]

var(XSAR)
, (6)

where τ is the time-lag and E denotes the expectation. The mean of XSAR

is given as µ and the variance is given as var(XSAR).
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In the original formulation, the TACD method used the autocorrelation at a
specific lag (τ) as the change metric, and the value of this lag was determined
by use of simulated change, in the proposed SAR TACD framework, a more
robust process is utilized by computing

δSARk =
k∑
τ=1

RSAR(τ). (7)

From (7) it is evident that the new change metric uses a summation of
the first k lags of RSAR(τ). By using the summation, the method is not
as sensitive to the selection of a specific value of τ . A change or no-change
decision was made by comparing δSARk , which is computed for each pixel in
the image, to a threshold value value δ∗

Change =

{
true if δSARk ≥ δ∗

false if δSARk < δ∗
(8)

3.2.1. Selection of the k parameter

To evaluate how the overall accuracy is affected by the selection of the
value of k, an experiment was performed where the overall accuracy was
evaluated for a range of k values. For each value of k, the overall accuracy
was calculated as

Ok
A =

P (C|C) + P (C|C)

P (C|C) + P (C|C) + P (C|C) + P (C|C)
(9)

where

P (C|C) =

∫ δSARk =∞

δSARk =δoptk

p(δSARk |C), (10)

P (C|C) =

∫ δSARk =∞

δSARk =δoptk

p(δSARk |C), (11)

P (C|C) =

∫ δSARk =δoptk

δSARk =0

p(δSARk |C), (12)

P (C|C) =

∫ δSARk =δoptk

δSARk =0

p(δSARk |C). (13)
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P (C|C) is the probability that a change was detected given that a change
was present (percentage change correctly detected), P (C|C) is the probabil-
ity that a change was detected given that no change was present (percentage
false alarms), P (C|C) is the probability that no change was detected given
that a change was introduced and P (C|C) is the probability that no change
was detected given that no change was introduced. The value of δoptk is the de-
cision threshold that minimizes the total Bayesian decision error. The results
of the experiment is shown in figure 6. It is clear from this experiment that
adding more than 23 autocorrelation lags (i.e k = 23) does not increase the
performance of the method and consequently a k value of 23 was chosen. In
[19], the autocorrelation summation as a means of making the TACD method
more robust was also considered, in that study, which utilized MODIS time
series data, it was also found that choosing a k parameter of 23 also gave
optimal performance. From this, it is apparent that the TACD method using
the lag summation strategy is robust across different datasets which reduces
the requirement of utilizing training data to determine a specific k value for
each region and dataset.

3.2.2. Selection of the δ∗ parameter

As previously stated, there is a requirement that the method should pro-
duce a false alarm rate of ≤ 1%. This is due to the fact that the change
algorithm is run over large areas and the validation of a large number of false
alarms could be very costly and time consuming. To determine the threshold
value that would yield a false alarm rate in this range, the Bayesian decision
error was evaluated based on the distribution of the inferred change index
(δSAR) using a training no-change dataset as follows

P (C|C) =

∫ δbτ=∞

δSARk =δ∗k

p(δSAR|C) = 0.01, (14)

where δ∗k is the decision threshold value and P (C|C) is the false alarm rate. It
can be seen from (14) that only no-change examples are required to determine
the threshold value δ∗k.

3.3. Bi-temporal SAR change detection

To justify the use of a stack of SAR imagery which is required for the
hyper-temporal approach proposed in this paper, as opposed to having only
two SAR images pre and post the change event, the proposed method was
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Table 2: k , δ∗, δLR∗ and False Alarm Rate (FAR) values

Method k δ∗ δLR∗ FAR
SAR TACD 23 1.69 - 1%
Bi-temporal

CD
- - 0.996 1%

compared to a pixel based bi-temporal change detection formulation using
only two images, one at the start and one at the end of the available SAR
image stack. The most common operator in bi-temporal SAR change de-
tection is the ratio operator [20], and in particular, we used the log-ratio
operator as it has been shown to be very effective when considering change
detection between SAR images [17, 18]. The change metric based on the
log-ratio between SAR images was computed as

δLRi,j = log

(
X i,j
t2

X i,j
t1

)
, (15)

where δLRi,j is the log ratio change metric at pixel (i, j). X i,j
t1 is the SAR

backscatter value for pixel (i, j) at time t1 (prior to the change event) with
X i,j
t2 being the SAR backscatter value for pixel (i, j) at time t2 (after to the

change event). The change and no-change decision was then made using the
following rule

Change =

{
true if δLR ≥ δLR∗

false if δLR < δLR∗,
(16)

with δLR∗ being the threshold value.

3.3.1. Selection of the δLR∗ parameter

Similar to the approach used in section 3.2.2, the threshold value was
selected to produce a false alarm rate of ≤ 1%. This was done by firstly
calculating the change index value δLR using the training no-change dataset
and calculating the corresponding threshold value as

P (C|C) =

∫ δLR=∞

δLR=δLR∗
p(δLR|C) = 0.01, (17)
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Table 3: Change Detection Accuracy (CDA) and False Alarm Rate (FAR) for both meth-
ods using parameters defined in sections 3.2.1 and 3.2.2

Method CDA FAR
SAR TACD 87% 0.8%
Bi-temporal

CD
70% 1.6%

A summary of the selected parameters are given in table 2.

4. Results

4.1. SAR TACD performance on unseen dataset

Using the k and δ∗k values determined in section 3.2.1, change was declared
on a per pixel basis as follows

Change =

{
true if

∑23
τ=1R(τ, x, y) ≥ 1.69

false if
∑23

τ=1R(τ, x, y) < 1.69

with the results shown in table 3. It can be seen that there is a strong
correlation in the false alarm rate between the training and unseen datasets
with the false alarm rate of the unseen dataset being within 0.2% of that of
the training dataset. The change detection accuracy that was achieved was
87%.

4.2. Bi-temporal SAR change detection performance on unseen dataset

Using the δLR∗ value determined in section 3.3.1, change was declared on
a per pixel basis using only the first and last SAR image in the time-series
as follows

Change =

{
true if δLR ≥ 0.996
false if δLR < 0.996

(18)

The results is also shown in table 3. It can be seen that similar to the
SAR-TACD case, there is a once again a strong correlation in the false alarm
rate between the training and unseen datasets with the false alarm rate of the
unseen dataset in this case being within 0.6% of that of the training dataset.
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The change detection accuracy that was achieved using the Bi-temporal CD
method was 70%.

5. Discussion

From sections 3.3 and 4 it is clear that the proposed SAR-TACD method
requires SAR time-series data as input as well as a no-change training dataset
to determine a threshold value. The training dataset requirement is thus lim-
ited to only no-change examples which are numerous and can be obtained in
large numbers as opposed to change examples that are rare at a regional scale
[6]. Another attractive feature of the method is the fact that the k parameter
has been shown to be very stable over multiple datasets which requires the
operator to only set the the value of δ∗ using a no-change dataset. It was
found that there was a good correlation between the false alarm rate of the
training (1%) versus the unseen datasets (0.8%) which implies a that the in-
sample and out-of-sample errors based on the value of δ∗ was roughly similar
indicating good generalization of the method. The low false alarm rate of
≤ 1% with a change detection accuracy of 87% makes the method attractive
as a regional change alarm. As comparison, a bi-temporal change detection
approach was also used using two images, one in the start of the SAR im-
age stack and one at the end. The resulting change detection accuracy for
the bi-temporal change detection method was 70%, which is 17% lower than
that of the SAR-TACD method. The SAR-TACD method also compared
well against a hyper-temporal optical change alarm framework proposed in
[3] where the same study area was considered and a hyper-temporal optical
time-series was used as input to a change alarm. The particular dataset that
was used was the MODIS MCD43A4 data product. An overall accuracy of
88% was reported for the study area [3], whereas the SAR-TACD achieved
an overall accuracy of 93%. Another advantage of the SAR-TACD method
is when considering that speckle, which potentially has a significant impact
in the case of image to image (bi-temporal) settlement detection due to the
fact that the change in backscatter between the same pixel in two images due
to speckle can be falsely seen as change. The advantage of the SAR-TACD
approach is that because a time-series is used, speckle causes a local variation
in the time-series but will not influence the backscatter trend. This can be
clearly seen in figure 5 (left) where even in the case of the no-change time-
series, significant local variation do occur but the time series mean remains
largely constant. This is very different to the change time-series in figure 5
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(right) where a definite trend is visible.

6. Conclusion

In this paper, the use of hyper-temporal SAR data for the detection
of new informal settlements in the Gauteng province of South Africa was
considered. A method previously shown to have good change detection per-
formance using optical hyper-temporal time-series, the Temporal Autocorre-
lation Change detection (TACD) method [3], was extended an modified to
work with hyper-temporal SAR data (SAR-TACD). This new change detec-
tion framework is intended to be used as a tool to alert operators to areas
of possible changes between two dates which could then be validated using
a secondary step (such as the use of high resolution imagery). As the algo-
rithm is intended to be run over potentially very large areas (regional scale),
a primary objective was to ensure that a very low false alarm rate should be
maintained. It was shown that using new proposed SAR-TACD framework
had a change detection accuracy of 87% when considering the detection of
new or expanding settlements in the study area with a corresponding false
alarm rate of ≤ 1% . It was also shown that the TACD method, which was
originally applied to optical time-series data, was easily adapted for the use of
SAR data and that certain parameters of the method (such as the k parame-
ter) was found to be universal across data types, making the TACD approach
very generic. Although specific change date information is not provided by
the method, this algorithm could still be used effectively to determine areas
of high change probability between two dates. An example would be mapping
agencies wanting to identify areas of high change likelihood between map-
ping intervals. Although the SAR-TACD algorithm has only been tested for
the case of new or expanding settlement detection in Gauteng, the method
can easily be applied regionally. With the increase in the availability of his-
toric (example ENVISAT ASAR) as well as future (example Sentinel-1) data
holdings, the feasibility of using a SAR time-series based change detection
approach is becoming increasingly more attractive.
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Figure 1: The study area used in this study was the Gauteng province (red outline) located
in the north-central part of South Africa.
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Figure 2: Example of a new settlement development that formed between 2005 and 2011.
Quickbird image on the top left shows the area in 2005 being mostly covered by natural
vegetation whereas the Quickbird image on the top right shows a new settlement that was
formed (Images courtesy of Google earthTM). The corresponding no-change area is also
indicated on an ASAR WSM image shown respectively on the bottom left and right.
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Figure 3: Example of an area that was mostly unchanged between 2005 and 2011. Quick-
bird image on the left shows the area in 2005 being mostly covered by natural vegetation
where the Quickbird image on the right shows the same area remaining unchanged (Images
courtesy of Google earthTM).The corresponding change area is also indicated on an ASAR
WSM image shown respectively on the bottom left and right.
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Figure 4: Flow diagram showing how a pixel time series was generated for a specific
location (x,y) using the ASAR image stack.
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Figure 5: Hyper temporal SAR HH backscatter time-series between 2005 and 2011 for a
ASAR WSM pixel corresponding to a change (right) and no-change (left) area respectively.
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Figure 6: Overall Accuracy (OA) as a function of the value of k with the standard deviation
at each k value shown as an error bar. It can be seen that increasing the value of k = 23
does not increase OA.
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