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Abstract 17 

Globally, subtropical forests are rich in biodiversity. However, the native biodiversity of these forests 18 

is threatened by the presence of invasive species such as Chromolaena odorata which thrives in forest 19 

canopy gaps. Our study explored the utility of WorldView-2 data, an 8-band high resolution (2 m) 20 

imagery for mapping the probability of C. odorata occurrence (presence/absence) in canopy gaps of a 21 

subtropical forest patch, the Dukuduku Forest, South Africa. An integrated modelling approach 22 

involving the WorldView-2 bands and ancillary environmental data was also assessed.   The results 23 

showed a higher performance of the environmental data only model (deviance or D2 = 0.52, p < 0.05, 24 

n = 77) when compared to modelling with WorldView-2 vegetation indices such as the enhanced 25 

vegetation index (EVI), simple ratio indices (SRI) and red edge normalized difference vegetation 26 

index (NDVIr) (D2 = 0.30, p < 0.05, n = 77). The integrated model explained the highest 27 

presence/absence variance of C. odorata (D2 =0.57, i.e. 57%). This model was used to derive 28 

probability map indicating the occurrence of invasive species in forest gaps.  A 2 x 2 error matrix 29 

table and the receiver operating characteristic (ROC) curves derived from an independent validation 30 

dataset (n = 38) were used to assess the mapping accuracy. Approximately 87% of canopy gaps 31 

containing C. odorata were correctly predicted at probability threshold of between 0.2 and 0.3.  The 32 

derived probability map of C. odorata occurrence will assist management in prioritizing target areas 33 

for eradication of the species.  34 

 35 

Keywords: forest management, remote sensing, invasive species, ROC curve, mapping accuracy  36 

Introduction 37 

Tropical forests cover approximately 6 % of the total land surface, and are important to the survival 38 

of many faunal and floral life-forms (WWF 2013). These forests also play a major role in the global 39 

climatic system, acting as carbon sinks (Sohngen and Alig 2000) and in water and nutrient cycling 40 

(Skole and Tucker 1993; Bousquet et al. 2000). Additionally, they provide ecological services to the 41 

nearby communities in the form of harvested timber, medicinal, food and wood crafts (Balee 1989; 42 



Cunningham 2001). However, their sustainability is threatened by the anthropogenic activities such as 43 

settlement expansion, agriculture, industrial activities, climate change and invasive species (Fourcade 44 

1889; Geldenhuys 1989).  45 

One of the world’s most noxious alien plants is Chromolaena odorata (triffid weed, Fig.1.), a shrub 46 

species that is indigenous to North and Central America, and is invasive in more than 23 countries 47 

globally. The invasive Chromolaena odorata (here onwards referred to as C. odorata) has an 48 

allelopathic effect that inhibits the indigenous plant species recruitment (Goodall and Zachariades, 49 

2002; Sahid and Sugau, 1993), by changing the chemical composition of soil underneath its canopy in 50 

indigenous forests (de Rouw 1991). C. odorata thrives in habitats that receive sufficient sunlight, 51 

ruderal environments, close to water courses and at forest or road margins (Joshi et al. 2006). The 52 

habitat preference is facilitated by the fact that Chromolaena species requires sufficient light and 53 

moisture, and as such, wide open areas serve as optimal niches for its establishment and seed dispersal 54 

(Witkowski and Wilson 2001).  Its tap-root system allows for deeper penetration into the substrate 55 

which gives it a competitive advantage over the native seedlings (Awanyo et al. 2011). In tropical 56 

forests, this species invades the indigenous vegetation through forest gaps, which may be created by 57 

tree fall (Kupfer and Runkle 1996), any catastrophic event (Brokaw 1982; Whitmore 1989), or 58 

selective timber harvesting (Suarez et al. 1998). The control and eradication of these invaders requires 59 

accurate mapping of forest gaps and modelling the extent of invasion in such gaps (Le Maitre et al. 60 

1996; Underwood et al. 2003).  Mapping the extent of invasive species may assist forest managers, 61 

conservation practitioners and all the relevant stakeholders to comprehend the extent of invasion and 62 

to allocate limited resources for the species eradication programmes (Reyers 2004). 63 

Conventionally, identification of invasive species is done using ground-based surveys (Buckland et 64 

al. 1996; Scott et al. 2002). This involves identifying species at habitats that are accessible, usually at 65 

the forest edges and in the proximity to roads and paths (Edwards et al. 2007). Although the collected 66 

environmental data (such as distance from roads and forest edges) are still useful in species prediction 67 

(Hirzel and Guisan 2002), the success of using environmental data collected through traditional field 68 

surveys is hampered by the amount of time and effort required for collection (Gu and Swihart 2004; 69 

Margules and Pressey 2000).  Additionally, a major drawback of employing field surveys is that they 70 

are inefficient in larger areas and in areas with less accessible terrain (Turner et al. 2003), while it is 71 

impossible to visit all forest gaps in indigenous tropical forests. To mitigate this problem, remote 72 

sensing technology is increasingly being employed as a rapid and cost-effective alternative for 73 

mapping invasive species in their habitats (Underwood et al. 2003; Joshi et al. 2006).  Remote sensing 74 

technology provides spatial vegetation cover over large geographical areas. This technology has been 75 

successfully used for actual canopy cover mapping of invasive species that dominate the canopy 76 

(Asner et al. 2008; Harding and Bate 1991). In instances where the invasive species’ spectral 77 

signature does not dominate the canopy, the probabilistic mapping approach has been adopted (Joshi 78 

et al. 2006; Laba et al. 2004).  79 

Few studies have been conducted to map the probability of occurrence of non-canopy dominating 80 

invasive species using remote sensing and environmental data in indigenous forests. For example 81 

Joshi et al. (2006) integrated Landsat ETM+ imagery with environmental data to map the probability 82 

of occurrence of C. odorata in south central Nepal forest.  However, remote sensing data such as 83 

Landsat, SPOT or IKONOS consist of spectral bands whose signal tend to saturate in high canopy 84 

vegetation i.e. leaf area index (LAI) greater than three (Knipling 1970; Mutanga and Skidmore 2004). 85 

Subtropical forest gaps are usually characterised by a high LAI. The development of new generation 86 

high spatial resolution satellites such as RapidEye (5 meters) and WorldView-2 (2 meters) has opened 87 

opportunities for improved characterisation of vegetation in a high LAI environment(Ramoelo et al. 88 



2012; Mutanga et al. 2012; Ozdemir and Karnieli 2011).   The  red edge band (700-725 nm) present in 89 

RapidEye and WorldView-2 has been shown to minimize the signal saturation problem common in 90 

traditional sensors, thereby improving the prediction of chlorophyll, nitrogen and vegetation biomass 91 

(Ramoelo et al. 2012; Mutanga et al. 2012; Cho et al. 2013).  In remote sensing, the “red edge” is the 92 

region of abrupt change in the leaf reflectance between 680 and 780 nm due to the combined effect of 93 

strong chlorophyll absorption in the red and high reflectance in the near-infrared wavelength resulting 94 

from internal scattering in the spongy mesophyll (Horler et al. 1983). Could the presence of the red-95 

edge band in WorldView-2 enhance the ability of predicting the occurrence of invasive C. odorata in 96 

forest canopy gaps?  97 

Ancillary environmental data such as distance from roads/trails, distance from rivers, distance from 98 

forest edges that have been used to predict the distribution of species (Franklin 1995; Yang et al. 99 

2006; Václavík and Meentemeyer 2009: Masocha and Skidmore 2011) can be easily generated from 100 

remote sensing imagery. The question is: Can the integration of ancillary environmental data with 101 

WorldView-2 data increase the accuracy of predicting the probability of occurrence of invasive C. 102 

odorata in forest canopy gaps? We used Dukuduku Coastal Forest of KwaZulu-Natal province, South 103 

Africa as a case study to test the afore-mentioned assumptions. Mapping the occurrence of the 104 

invasive species in forest canopy gaps rather than its actual cover is important since C. odorata 105 

occupies the canopy gaps mixed with other species, as opposed to growing understorey due its light, 106 

space and soil moisture requirement (Joshi et al. 2006).  107 

 108 

Fig. 1 Schematic representation of Chromolaena odorata morphology (Source: Joshi et al. 2006) 109 

Study area 110 

 111 

This study was undertaken in Dukuduku forest, the largest remaining patch of subtropical coastal 112 

forest in KwaZulu-Natal, South Africa (28°38’33”S and 32°31’67”E). (Fig. 2).  The study area has an 113 

area of about 3172.43 hectares. On the western side, the forest is surrounded by the sugar plantation 114 

farms and the Eucalyptus plantations, while on the eastern side are villages that practise subsistence 115 



farming.  The climate of KwaZulu-Natal is subtropical, with high summer precipitation and high 116 

temperatures of over 33°C (between September and April). Winters are generally cooler (below 8°C), 117 

with the annual sea surface temperature of 15°C. The area receives annual rainfall of about 1 600 mm 118 

(Luwum 2002).  119 

 120 

 121 

Fig. 2 The location of the Dukuduku forest in KwaZulu-Natal, South Africa. 122 

 123 

 Image acquisition and pre-processing 124 

 125 

WorldView-2 image (acquired on 01 December 2010) with 8 spectral bands and at a 2 meter spatial 126 

resolution was used for the delineation of forest gaps. The delineated forest gaps (Fig. 3) were derived 127 

from WorldView-2 data using object-based image analysis (OBIA), with a 93.69% overall accuracy 128 

(Malahlela et al. in review).  The image was geo-referenced to Universal Transverse Mercator (WGS 129 

84), mosaicked and clipped to the study area.  The imagery was geometrically corrected by the 130 

supplier (geolocation accuracy < 3.5m CE90, as specified by Digital Globe), and the atmospheric 131 

correction was done using the AtCOR 2/3 software distributed by ReSe® Applications.  The 132 

atmospheric correction was based on the MODTRAN 5 module, which is a ‘narrow band model’ 133 

atmospheric radiative transfer code – with spectral range of between 0.2 to 100 µm (Berk et al. 1998). 134 

The atmospheric conditions specified in the AtCOR software for this image processing was the 135 

‘tropical rural’ conditions due to the nature of the study area.  136 



 137 

 138 

Fig. 3 Delineated forest gaps comprising of non-vegetated (upper) and vegetated (lower) gaps (Malahlela et 139 

al. in review). 140 

 141 

Field data collection 142 

 143 

Field data were collected on two occasions and in different seasons (July and October 2011) because 144 

of logistical constraints.  The data collected included the location of forest canopy gaps (using Vista 145 

eTrex TM GPS, with maximum spatial accuracy of 4 m), as well as the presence/absence of invasive 146 

species (Chromolaena) in forest gaps. The collection of the data followed a line transect method. A 147 

total of 13 line transects were visited across the forest, each with the minimum length of about 1 km.  148 

A simple random sampling technique was applied, where lines were randomly pre-selected to cover 149 

most parts of the forest. In total, 115 (n = 115) forest gaps were visited in the field. We used 2/3 (n = 150 



77) of the data to construct a logistic regression model while 1/3 (n = 38) of the data was used to 151 

validate the model. 152 

 153 

 154 

 155 

 156 

 157 
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 171 

 172 

 173 

 174 

Fig. 4 Schematic representation of workflow followed during logistic regression modelling. 175 

Data analysis 176 

The relationship between C. odorata presence/absence, environmental data and remote sensing data 177 

was modelled in logistic regression as shown in Fig. 4. A logistic regression was conducted for 3 sets 178 

of variables, i.e. (a) environmental variables only (Table 1), (b) spectral variables only and (c) 179 

combined environmental and remote sensing variables in a stepwise logistic regression (Table 1). 180 
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Table 1 181 

Ancillary environmental variables and WorldView-2 data variables used for modelling 182 

Variable Processing Layer 
   

 
Elevation  
(ELEV.) 

 
The digital elevation model (DEM) layer 
was generated from the 15 meter contour 
lines of the study area 
Generation of the DEM is based on the 
algorithm ANUDEM, which calculates 
values on a regular grid of a discretised 
smooth surface fitted to a large number of 
irregularly spaced elevation data points, 
contour line data and stream line data 
(Hutchinson 1996). 
 

 

 

Aspect 
(ASPECT) 

Aspect layer was generated from a 15 
meter DEM with the help of Spatial 
Analyst tool in ArcGIS software  

 
 

Canopy gaps 
characteristics (size and 

perimeter) 
(GAPSIZE, 

PERIMETER) 

Gap size and gap perimeter layers were 
generated from the WorldView-2 derived 
delineated forest canopy gaps. Forest 
canopy gaps were delineated in object-
based image analysis using the modified 
plant senescence index (Merzlyak et al. 
1999). This technique yielded the highest 
accuracy of 93.69% when compared to 
pixel-based classification, and therefore 
the results were used to derive forest gap 
size and perimeter. 
 

 

Distance from roads 
(RDDIST) 

Distance from roads was generated from a 
road dataset in ArcGIS. The distances 
from roads were calculated from the forest 
gaps to the closest roads/paths. The 
forest’s boundaries are mainly the main 
roads (national tar roads) and the gravel 
roads created for demarcating agricultural 
plantations. Distances were measured in 
meters (m) 

 
 



 183 

 184 

Ancillary environmental variables 185 

Ancillary environmental variables and WorldView-2 data variables were used for modelling. 186 

Ancillary environmental data were used based on their importance as factors driving the distribution 187 

of C. odorata as described in the introduction and availability.  The ancillary environmental dataset 188 

included digital elevation model (DEM) layer, aspect layer (ASPECT)), distance from roads layer 189 

(RDDIST), distance from rivers layer (RVDIST), gap size layer (SIZE), distance from forest edges 190 

(FSTEDGE) and gap perimeter layer (PERIMETER) (Table 1). 191 

Spectral data 192 

Spectral dataset was processed as vegetation indices. We opted to use vegetation indices as 193 

individual bands on their own do not yield any significance relationships with species occurrence 194 

(Verstraete and Pinty 1996). A number of vegetation indices such as the Normalized Difference 195 

Vegetation Index (NDVI), the Red edge Normalized Difference Vegetation Index (NDVIr), the 196 

Normalized Green Vegetation Index (NDVIgr), the Soil-Adjusted Vegetation Index (SAVI), the 197 

modified Plant Senescence Reflectance Index (mPSRI), Simple Ratio Index (SRI), the Enhanced 198 

Vegetation Index (EVI), the Normalized Pigment Chlorophyll Index (NPCI), and the Atmospherically 199 

Resistant Vegetation Index (ARVI) were computed from WorldView-2 image These indices were 200 

treated individually as separate input variables for prediction. These indices fallen into either of the 201 

two sets, i.e. (i) indices that can be commonly derived from conventional sensors such as Landsat, and 202 

(ii) indices that can be derived from WorldView-2 imagery. A total of eleven (11) vegetation indices 203 

were tested for this study (Table 1and 2). 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

Distance from rivers 
(RVDIST) 

The distance from river map was derived 
from river and streams dataset of the study 
area. The generation of this map was done 
in ArcGIS. The distance was calculated 
from the nearest stream to the forest gap to 
determine the influence of rivers to the 
distribution of invasive species. The 
distances were measured in meters (m). 

 
 
 

Vegetation indices Two sets of vegetation indices were tested 
for the regression. These sets are (i) 
indices that are commonly derived from 
conventional sensors, and (ii) indices that 
can be derived from WorldView-2 
imagery. A total of seven (7) vegetation 
indices were tested for this study (Table 8). 
 

See table 2 



 213 

 214 

Table 2 215 

Vegetation indices selected for the study 216 

 217 

 218 

 219 

Index Formula Application Reference 
 

 
NDVI 

 
 ���� = ����	�

�

������

� 
 
Traditional index used to monitor 
vegetation vigour, health, vegetation 
cover and biomass. Values range from -
1(bare surfaces) to 1(green plants). 

 
Jackson et al.(1983) 

 
 
NDVIr 															����� = ���� − ����

����+����  

 New WorldView-2 index that improves 
the detection of vegetation health, 
greenness, and biomass estimation. It is 
computed from the red edge band 
centered at 725nm, instead of a red band 
centered at 660nm as in NDVI. Values 
range from -1(bare surfaces) to 1(green 
vegetation). 

Gitelson and 
Merzlyak (1994) 

 
SRI 
(various) 																	��� = ����

���� 

 Used for mapping vegetation health and 
condition. It is high in very healthy 
vegetation and low in stressed vegetation 
or non-vegetated areas. 

Asrar (1989) 

 
mPSRI 																����� = ���� − ����

����  

 New WorldView-2 index used for 
detecting of leaf senescence, plant 
physiological stress and fruit ripening. 
Values range from -1(stressed canopy) to 
1(less stressed canopy). 

Merzlyak et al.(1999) 

 
NDVIgr ������ = ���� − ����

���� + ���� Traditional index that works similarly to 
NDVI and additionally measures the 
greenness of vegetation. 

Gitelson et al.(1999) 

 
EVI ��� = 2.5 # ���� −	����

���� + 6���� − 7.5���� + 1' 

 

 

The enhanced vegetation index (EVI) is 
an 'optimized' index designed to enhance 
the vegetation signal with improved 
sensitivity in high biomass regions and 
improved vegetation monitoring through 
a de-coupling of the canopy background 
signal and a reduction in atmospheric 
influences. 

Huete et al.(1997) 

 
ARVI (��� = ���� − (2���� − ����)

���� + (2���� − ����) 
 An enhancement to the NDVI that is 

relatively resistant to atmospheric factors 
(for example, aerosol). It uses the 
reflectance in blue to correct the red 
reflectance for atmospheric scattering. It 
is most useful in regions of high 
atmospheric aerosol content, including 
tropical regions contaminated by soot 
from slash-and-burn agriculture.  
 

Kaufman and Tanre 
(1996) 
 

NPCI ��+� = ���� − ����
���� + ���� 

The normalized difference pigment 
chlorophyll index (NPCI) was developed 
especially for the detection of the 
chlorophyll content of crops. 

Peñuelas et al. (1995) 

SAVI �(�� = # ���� − ����
����+���� + 0.5' ∗ (1 + 0.5) Traditional index used also for vegetation 

monitoring, biomass and vegetation 
health. It improves on NDVI by 
compensating for soil-background.  

Huete et al. (1997) 



Model calibration 220 

The dataset (n = 77) was randomly split into 2/3 (n = 38) for model calibration. The calibration 221 

dataset was used to train the model for invasive species occurrence using the R statistical software.  A 222 

stepwise logistic regression model was used for all input variables. In stepwise logistic regression, an 223 

attempt is made to eliminate any insignificant variable from the model before adding a significant one 224 

to the model and to deal with multi-collinear variables.  We used forward elimination procedure to 225 

select suitable variables in the final model (Manel et al. 1999). The choice of the forward stepwise 226 

logistic regression model was dictated by the binary nature of the response variable 227 

(presence/absence), its simplicity for embedding in GIS software (Yang et al. 2006) and its popularity 228 

amongst all other predictive models (Manel et al. 1999; Aspinall 2002).  Logistic regression is given 229 

by the following equation: 230 

� = ./�0/1210/3230⋯/525
6�./�0/1210/3230⋯/525       (1) 231 

where P is the probability of occurrence, xn is the explanatory variable, βn are the coefficient of xn, β0 232 

is the intercept and e is the exponent function of the model.  The final model goodness of fit was 233 

measured by the deviance (D2) which is an analogy to a coefficient of determination (R2) peculiar to 234 

logistic regression model (Rossiter and Loza 2012). The D2 is obtained from the following equation: 235 

�� = 1 − 78.9:;<=>	;.?:=@A.@<>>	;.?:=@A. B         (2) 236 

 237 

Each variable removal or addition from or to a model is listed as a separate step in the model output. 238 

The model with the highest D2 and lowest Aikaike’s Information Criterion (AIC) was selected as the 239 

most ideal model because it has the best fit (Fox 2002).  240 

 241 

 Model validation 242 

One-thirds of the data (n = 38) was used for validating the predictive model. The predicted 243 

probabilities (y), which ranged from values between 0 and 1, represented the increasing probability of 244 

C. odorata presence in forest canopy gaps. A range of thresholds was explored to determine the 245 

optimum threshold level for predicting C. odorata presence/absence (P/A) in forest gaps.  The study 246 

by Manel et al. (1999) previously suggested a probability threshold value of 0.5 as the optimum 247 

threshold value for species prediction, although this value may not be ideal in all circumstances.  For 248 

this study, we tested probability thresholds of 0.2 – 0.9. A 2 x 2 error matrix table (with rows 249 

indicating predicted cases and columns indicating observed cases) was plotted for a threshold value 250 

that yielded the highest mapping accuracy. The overall mapping accuracy is defined as the total 251 

number of the correctly predicted test cases to the total number of test samples, and is presented as a 252 

percentage (Fielding and Bell 1997). The table compares the predicted values (from an optimum 253 

threshold value) with the observed field data of C. odorata distribution.  254 

The area under the ROC (AUC) has been used in several studies in order to understand the 255 

robustness of the model for a binary classifier (Egan 1975; Swets et al. 2000; Fawcett 2006; MedCal 256 

2014).  The AUC value of 0.5 indicates that the model accuracy is equal to the random prediction, 257 

while the value of 1.0 shows the perfect model fit (Baldwin 2009). In essence, the AUC has a 258 

quantitative measure on a 0.0 to 1.0 scale, with the following grading levels: 259 

• < 0.6 indicates a poor model 260 



• 0.6 – 0.7 indicates a pass model 261 

• 0.7 – 0.8 indicates a good model 262 

• >0.9 indicates an excellent model 263 

Furthermore, the sensitivity and specificity analysis was performed across the probability range 264 

from 0.2 – 0.9. For binary error matrix, sensitivity is defined as the proportion of correctly classified 265 

presence to the total number of presences in the test samples. On the other hand, specificity is the 266 

proportion of correctly predicted absence to the total number of absence in test samples (Fielding and 267 

Bell 1997).  268 

Results 269 

Logistic regression 270 

The combined environmental and spectral data model explained 71 % of the variance in the C. 271 

odorata presence/absence data (D2 = 0.71, p < 0.05), which was the highest when compared to the 272 

spectra data only (D2 = 0.30, p < 0.05) and ancillary environmental data only (D2 = 0.52, p < 0.05) 273 

models. From the integrated stepwise logistic model, two of the environmental variables (distance 274 

from rivers and distance from roads) were significant at p < 0.05. These environmental variables have 275 

shown negative relationship to the presence/absence of C. odorata in the forest gaps, at p < 0.05.  276 

 277 

Table 3 278 

The results of three logistic regression models and their significant (shown by * and º) and non-significant 279 

variables. 280 

 281 

Data Source Predictor Estimate Std. Error z value ρ value 

Environmental 
Variables 

 (D2 = 0.52 ) 

 
(Intercept) 

 
  5.9560 

 
2.2394 

 
  2.2660 

 
0.007 ** 

Distance from rivers - 0.0059 0.0023 - 2.601 0.009 ** 
Distance from roads - 0.0033 0.0014 - 2.400 0.016 * 
Elevation - 0.0230 0.0334 - 0.689 0.490 
Aspect   0.0029 0.0051   0.582 0.561 
Gap Size   0.0275 0.0200   1.372 0.169 

 Distance from edges - 0.0013 0.0013 - 0.982 0.326 

 Gap perimeter - 0.0509 0.0363 - 1.401 0.161 

WorldView-2 
 Variables  

(D2 = 0.30  ) 

(Intercept) - 273.080 273.274 - 0.999 0.317 
NDVIgr   14.506   14.632   0.991 0.322 
SRI_r   803.929 380.604   2.112 0.035 * 
SRI_IR - 1.900  1.021 - 1.861 0.063  ̊ 
SRI_re - 281.530 143.338 - 1.964 0.050 * 
NDVIr - 361.554 190.469 - 1.898 0.058   ̊
mPSRI  - 347.555 163.974 - 2.120 0.034 * 
SAVI   1861.780 1066.201   1.746 0.081   ̊
NDVI - 1907.697 1460.870 - 1.306 0.192 
ARVI - 322.005 192.147 - 1.676 0.093   ̊ 
NPCI   10.572 21.089  0.501 0.616 
EVI  - 0.986 4.297 - 0.229 0.819 

      

Combined  
Model  

(D2 = 0.57 ) 

(Intercept) 114.600 62.26   1.840 0.066   ̊
Distance from rivers - 0.0200 0.0100 - 2.121 0.033 * 
Distance from roads - 0.0100 0.0000 - 2.225 0.026 * 
NDVIr - 38.110 24.770 - 1.538 0.123 
SAVI - 76.920 42.190 - 1.823 0.068   ̊
mPSRI  - 291.80 167.70 - 1.740 0.081   ̊



The elevation was the only environmental variable with a significant negative relationship to the 282 

presence/absence of invasive species (p < 0.05). Additionally, from this model, three of the spectral 283 

data variables (mPSRI, SAVI and EVI) were significant at alpha < 0.1.  All of the vegetation indices 284 

have shown negative correlation to the invasive C. odorata presence/absence in forest gaps. On the 285 

other hand, the NDVIgr showed a positive relationship to the presence/absence data of C. odorata in 286 

forest gaps (Table 3).  The results from environmental data-only model have shown that the intercept 287 

(p < 0.01), distance from roads (p < 0.01), and distance from roads/paths (p < 0.05) were significantly 288 

correlated to species presence/absence. Among the environmental data only model, the distance from 289 

rivers was the most significant positive variable at p < 0.01.   Amongst WorldView-2 data only 290 

model, six of the variables were significant, with red Simple Ratio Index (SRI_r, computed from 291 

red/NIR1), the red edge Simple Ratio Index (SRI_re, computed from red edge/NIR1) and mPSRI 292 

were significantly correlated to the species presence/absence in the forest gaps at p < 0.05. Figure 5 293 

shows the predicted probability of occurrence of invasive species across the delineated forest gaps.  294 

Overall, the integrated step-wise logistic regression model has shown an improvement of over 36% 295 

compared to environmental variables only.  296 

 297 

 298 

 299 

 300 

 301 

 302 
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 304 

 305 

 306 

 307 

 308 

 309 

Fig. 5 A predicted probability map indicating the occurrence of Chromolaena odorata in delineated forest 310 

gaps at the Dukuduku forest. 311 

Model validation 312 

The predictive model (binary outcome value range of 0.0 – 1.0) was validated using probability 313 

threshold values as shown in table 4.  The highest prediction accuracies were obtained at threshold 314 

NDVIgr   68.910 51.750   1.823 0.183 
EVI - 19.000 10.780 - 1.763 0.078  ̊   
Elevation - 0.0900 0.0500 - 1.922 0.050  ̊  

Significance codes:     ( ̊ ), 0.1                   (*), 0.05                 (**), 0.01                   (***), 0,001          



range between 0.2 and 0.3 (both at 87%).  The highest sensitivity rates (defined as the proportion of 315 

correctly classified presence to the total number of presences in the test samples) were observed at 316 

similar threshold range (87%). The highest specificity rates (specificity is the proportion of correctly 317 

predicted absence to the total number of absence in test samples) were obtained at the threshold 318 

values of 0.8 and 0.9 (both at 86%) (Fielding and Bell 1997).  The 2 x 2 error matrix table for a 319 

probability threshold of 0.2 and 0.3 is shown in table 5.   320 

 321 

Table 4 322 

Statistics for evaluating model performance across probability threshold values 323 

 324 

Table 5 325 

Predicted outcomes (y) from logistic regression on Chromolaena odorata vs. the observed field data at 326 

probability threshold of 0.2 and 0.3 (ρ = 0.3) 327 

 328 

Predicted Occurrences 

Presence Absence Total 

Observed 
Occurrences 

Presence 27 4 31 

Absence 1 6 7 

Total 28 10 38 
 329 

The robustness of the model (curve) was also measured by the Area Under the Curve of receiver 330 

operating characteristic (ROC) curve (Fig. 6). The validation dataset yielded an AUC of 0.89 at p = 331 

0.001, which shows that the model used for prediction was significant.  The diagonal line in the model 332 

represents the strategy of randomly guessing a class (Fawcett 2006). If the curve bends towards or 333 

below the diagonal line (decreasing sensitivity) this indicates a poor model. A good model is the one 334 

whose curve bends towards the north-western direction of the plot (Fawcett 2006). Our ROC shows 335 

that our curve bends towards the north-western direction, and hence an AUC of 0.89. 336 

 
Probability Threshold 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Prediction 
Accuracy 

(%) 
0.87 0.87 0.84 0.84 0.84 0.82 0.82 0.79 

Sensitivity 
(%) 

0.87 0.87 0.84 0.84 0.84 0.81 0.81 0.77 

Specificity 
(%) 

0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 



 337 

Fig. 6 The ROC curve derived from validation dataset (n = 38) across different probability thresholds. The 338 

dotted line indicates a line of no-discrimination (random guess) while the red line indicates sensitivity and 339 

specificity of model across different threshold values. 340 

 341 

Discussion 342 

The findings of the study suggest that there is a relationship between WorldView-2 spectral bands 343 

and the presence/absence of invasive C. odorata (Table 3).  The model that combined the 344 

environmental variables and spectral variables yielded the highest prediction accuracy, which 345 

underscores the importance of such variables in the prediction of C. odorata in forest gaps (Ozdemir 346 

and Karnieli 2011) (Fig. 7). This integration is necessary since on their own, the ancillary 347 

environmental variables or WorldView-2 data do not yield prediction accuracies greater than 60%. 348 

The general trend depicted by the predictive model shows that the probability of occurrence of C. 349 

odorata tends to increase in forest gaps that are less vegetated than those that are densely vegetated. 350 

This trend is supported by observing the predictive model’s spectral estimates of the NDVIr, mPSRI, 351 

SAVI and EVI, most of which are significantly correlated with the presence and absence data of C. 352 

odorata. A negative estimate of red edge band (used to compute NDVIr)  means that the presence of 353 

C. odorata decreases with increasing density of vegetation, as an increase in reflectance at this 354 

spectral region (705 – 745 nm) is associated with increases in vegetation densities or biomass 355 

(Knipling 1970). Similar findings were achieved by Joshi et al. (2006) who observed that C. odorata 356 

does not thrive in densely vegetated forest areas. This characteristic is very important to this invader, 357 

in that it satisfies the light requirement of the species in question.  These findings show that the red 358 

edge is significant in mapping the probability of occurrence of C. odorata.  359 

Previous studies have highlighted that the plant senescence reflectance index (PSRI, from which 360 

mPSRI was derived) is sensitive for detecting senescing leaves and to detect physiological stress at 361 

different developmental stages of plants (Merzlyak et al 1999; Peñuelas et al 1994; Hatfield and 362 

Prueger 2010). In the same light the mPSRI (which uses blue and red edge band, instead of green and 363 

NIR) indicated that increase in plant stress in vegetated forest gaps increases the probability of C. 364 

odorata presence. This is true when observing the negative estimate of mPSRI (-291.80, p < 0.08) 365 

ROC Curve

0 20 40 60 80 100

0

20

40

60

80

100

100-Specificity

S
e
n
si

tiv
ity

AUC = 0.89
p < 0.001



since a negative estimate indicates the stressed vegetated area, while the positive estimate indicates 366 

less stressed vegetated areas (Merzlyak et al 1999). The enhanced vegetation index (EVI) has long 367 

been used to assess vegetation biomass in different biomes, and it is already established that increase 368 

in EVI values is associated with increase in the density of vegetation (Huete et al 1997). Conversely, 369 

our study has found that decreases in EVI values is associated with the probability of invasive species 370 

presence in forest gaps, which is an indication that less vegetated forest gaps are prone to invasion 371 

than their vegetated counterparts. These findings are especially true considering the negative 372 

correlation between invasive species distribution and SAVI, which is known to improve on NDVI by 373 

compensating for soil background (Huete et al. 1997).  374 

 375 

Fig. 7 Model accuracy comparison amongst environmental data-only model (Envir), WorldView-2 data-only 376 

(WV-2) and a combined environmental and WorldView-2 data model (Comb). 377 

The environmental variables such as distance from rivers/streams and aspect were found to be 378 

negatively significant in determining the presence and absence of C. odorata occurrence.  The 379 

implication is that as one advances closer to the streams, the probability of finding C. odorata 380 

increases, and this is in line with the findings by Joshi et al. (2006) and Van Gils et al. (2006) who 381 

found areas closer to roads and edges to be more likely invaded by C. odorata.  The tap root system of 382 

this species gives it a competitive advantage over water and ensures its stability in invaded habitats. 383 

The results also showed that the probability of invasive species occurrence increases with the decrease 384 

in elevation. This is true since in troposphere an increase in elevation results in decrease in 385 

temperature, and thereby inhibiting the occurrence of plant species that are adapted to warmer 386 

conditions.   Additionally, one is more likely to find invasive species in north facing slopes, than the 387 

south facing slopes, as shown in Table 3. This is due to the fact that north-facing slopes in the 388 

southern hemisphere are warmer than south-facing slopes (Adams 2010). The species triumphs in 389 

areas that are open, with appropriate light and temperature ranges of between 20 - 37˚C, and hence the 390 

increase in slope direction (towards the north) increases probability of finding C. odorata (Gareeb 391 

2007). Our study also highlighted that invasive C. odorata prefers forest gaps that are closer to the 392 

streams due to their competitive nature for water and essential mineral resources. This trend is in line 393 

with the findings by Goodall and Zacharias (2002) who observed that this invasive species prefers 394 
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forest margins and is often found along rivers or streams. Roads and forest edges serve as the 395 

alleys/corridors through which the seeds of this species are dispersed, especially considering the fact 396 

that they require wind as a dispersal mechanism. On the whole, the pattern of the probability of 397 

occurrence (fig. 5) indicate that C. odorata is less likely to occur in pristine forest than in the areas 398 

that are open, such as closer to the roads or at the edges of forest (Joshi et al. 2006). 399 

 400 

Management of invasive species 401 

The management of invasive species such as C. odorata has been debated in different countries, 402 

globally. For example Herren-Gemill (1991) described the need to control C. odorata due to its high 403 

frequency of occurrence in invaded fallow sites in West Africa.  From the conservation point of view, 404 

management and control priority should be focused on the species’ habitat and future distribution of 405 

species (Rowe 1992), and not solely on the degradation levels caused by this species (Goodall and 406 

Erasmus 1996). Mapping the probability of occurrence of invasive species in its potential habitats 407 

(forest gaps) is crucial to the management geared towards eliminating such species. The output maps 408 

serve as a guideline to fieldworkers and forest managers for the identification of probable habitats of 409 

C. odorata and for man-power recruitment. 410 

 411 

Fig. 8 Probability maps are crucial to the management of invasive species. In these picture frames the 412 

researcher (Primary author of this paper) presents the probability maps to the field workers who were 413 

tasked to eradicate invasive Chromolaena odorata in across the forest. 414 

In South Africa, for example, there are projects that are aimed at eradicating invasive C. odorata in 415 

the coastal forests, such as the Dukuduku forest (Fig.8), where field workers are assigned to walk 416 

randomly through the forest to eradicate visible invasive species.  The modeling of invasive species 417 

probability of occurrence could potentially assist in eliminating the random search of invasive species 418 

by providing key indications of areas of high probability of occurrence. Additional environmental 419 

data variables such as mean annual temperature, precipitation, soil data (pH, texture, moisture), could 420 

potentially improve the prediction power of the model. The application of predictive models such as 421 

Maxent has also shown to increase the prediction accuracy of species presence/absence data but has 422 

not been used for the study (Kumar and Stohlgren, 2009).  423 

 424 



3.6 Conclusion 425 

The additional bands present in WorldView-2 bands increases the capability of the sensor in the 426 

mapping of the probability C. odorata presence/absence in subtropical forest canopy gaps when 427 

compared to ancillary environmental variables. The improved accuracies are derivable when using 428 

WorldView-2 data products such as vegetation indices. The environmental data-only model explained 429 

about 52% of the presence/absence of invasive C.odorata presence or absence in forest gaps. The 430 

final combined model of WorldView-2 spectral data and ancillary environmental data increased 431 

predictive model accuracy to 71% (D2 = 0.71; WorldView-2 data added) from 52 % (D2 = 0.52; 432 

environmental data only), which emphasizes the advantage of integrating WorldView-2 with the 433 

ancillary environmental data for invasive species mapping. From the selected model, all other 434 

vegetation indices have shown the expected pattern of the distribution of C. odorata in forest gaps, 435 

except the green normalized difference vegetation index (NDVIgr), which has shown to be 436 

insignificantly positively related to invasive species in forest gaps. Although this variable contributed 437 

to the model, its implication to invasive species occurrence is subject to further investigation.  438 

Exploring the indices centered on new bands of WV-2 such as coastal band, yellow band and near-439 

infrared-2 could potentially increase the accuracy of prediction, rather than red edge-centric analysis.  440 

 441 
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