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Dear Dr. Onisimo Mutanga, the Associate Editor, and Dr. Derek Lichti, the Editor-in-Chief 

 

Thank you and the reviewers for the first round of comments and suggestions concerning our 

submitted manuscript. We have revised the manuscript accordingly by carefully taking into account 

the feedback put forward by the reviewers. Almost all of the suggestions were accepted for revision. 

The comments and the associated responses (in red) are mentioned below and the corrections included 

in the revised manuscript: 

 

Reviewer #1: 

 

- We would like to thank the reviewer for the positive comments pertaining to our manuscript 

- As requested by the reviewer, the text in the manuscript have been aligned to both margins 

(“justified”) 

 

Main Points/concerns: 

- Contributions seem a little weak with regard to author‟s previous publications and 

other works (e.g. Urbazaev et al….). We would like to thank the reviewer for this 

comment. We believe the work has value and contributes to the scientific community as 

multi-frequency SAR and the usefulness of each of the frequencies (and their 

combinations) have not been investigated in this detail in the academic literature within 

the context of  modelling savannah tree structural attributes (e.g. canopy cover and 

biomass etc.). The contributions (error distributed across structural attribute grouping 

and spatial patterning) of each frequency and their combinations could be seen as the 

major contribution of this manuscript rather than the actual modelling side which may 

resemble some of the previous publications work. A statement was added to the end of 

page 6 of the manuscript, accompanying research question #3, to further support the 

purpose of the study [“More specifically, the investigation of the interactions of the 

different SAR frequencies, and their possible combinations, across the different 

Response to Reviewers



vegetation patterning and structural classes, such as grasslands, thickets and forests, 

will pin-point the effective application of the different SAR frequencies and their 

possible combinations in Southern African savannah landscapes.”] 

- Presentation of Figure 8 and 9 are not easily understandable…from my point of view 

they add a little more confusion than clarification or support. Figure 9 and 10 may 

confuse the reader when it comes to the main error trends observed in the boxplot 

figures (Figure 8) but they both represent, visually, realistic examples of what is seen in 

the different landscape types associated with South African savannahs. The authors 

believe these figures have merit and should be included in the manuscript. 

- Language issues related to the proper introduction of abbreviations, consistence when 

presenting certain concepts, long sentences and the overuse of parentheses. The authors 

would like to thank the reviewer for pointing out these language issues. The appropriate 

corrections were made throughout the manuscript to allow for improved sentence flow 

and structuring. 

 

Comments/Suggestions page by page: 

- P1L2: abbreviation of SAR might be redundant. Agreed, the SAR abbreviation was 

removed from the manuscript title 

- P1L54: The paper is mainly written using British English. “utilized”. The British 

spelling “utilised” was used here instead. 

- P2L4: “R
2
”. This refers to a coefficient of determination which is a means of modelling 

accuracy. “Coefficient of determination” was added in the text for explanation. 

- P2L38: I think multiple references should be separated by a semicolon. Check 

throughout text.  Agreed, semicolons were added to separate multiple references 

throughout the text 

- P2L51: “et al” missing period, check throughout text. We thank the review for pointing 

this error out. The period was added to all “et al.” 

- P3L35: “and” used for reference separation. Many thanks, the “and” was removed.  

- P4 2
nd

 Paragraph: For better structure of the paragraph, you might want to describe 

LiDAR first and SAR afterwards rather than mixing them both. The authors would like 

to thank the review for this suggestion. The paragraph was restructured to discuss 

LiDAR first followed by SAR. 

- P5L23: “tonnes/ha”, first of many different abbreviations to come (t/ha, T/ha), which 

are actually never properly introduced.  Apologies for the inconsistency here. We 

expanded the unit of measure to “tonnes per hectare”. The term was first and 

adequately introduced on Page 3 lines 10-12 but the inconsistency may have caused 



confusion. Paper was reviewed and all the different abbreviations of “tonnes per 

hectare” have been standardized to t/ha. 

- P5L25: “woodlands and savannahs possess”. Agreed, the necessary change was made 

- P5L28: “landscape, we” you have a tendency to (very) long sentences, which is 

sometimes hard to read. Check either if the usage of commas or splitting might be 

appropriate. The authors agree with the reviewer‟s recommendation. Commas were 

added to make the sentence flow a lot better. Throughout the manuscript, efforts have 

been made to reduce long sentences by splitting them up into multiple sentences. 

- P6L14: long sentence due to heavy usage of () to include side information. This also 

makes it hard to follow the idea of the sentence. Agreed, parentheses have been removed 

and replaced with commas. The sentence was also split into two sentences to reduce 

length and improve word flow. 

- P6L35: outline? What is to come in the next pages and sections? The authors appreciate 

the reviewer‟s suggestion. A paragraph outlining the contents of the following sections 

was added at the end of the introduction section on page 6. 

- P6L47: “figure 1”, starting with uppercase letter? Check throughout text. The authors 

agree with the suggestion and have modified all the “figure” and “table” labels in the 

text by using uppercase letters (e.g. Figure 1). 

- P7L2: “T/ha”. Many thanks for pointing this out. The tonnes per hectare abbreviations 

have all been standardised to “t/ha” 

- P8L6: “figure 5”, this is the 2
nd

 reference to a figure. The authors understand the 

reviewer‟s issue here. To avoid confusion and inconsistency in the figure numbering 

order, the words “figure 5” were removed from the beginning paragraph of section 3 as 

the methodological schema is only presented at the end of the Section 3. The following 

sentence was also added at the end of Page 16 to properly introduce the methodology 

schema in Figure 5 [“The complete methodology have been summarized and compiled 

in the form a methodological schema (Figure 5)”]. 

- P8L14: “Random Forest algorithm”, might be a good place for the reference, as it is the 

first mentioning. Agreed, the reference “Breiman, 2001” was added at Page 8 Line 8 in 

the manuscript. 

- P9 Section 3.2: Some short description about time overlap of the field data and SAR 

data would be good, particularly as acquisition times are within almost 3 years. How is 

this handled, compensated, expected effects, influences? The authors would like to thank 

the reviewers for this suggestion. A paragraph on possible error sources was included in 

the discussion to address this issue. The difference in acquisition of the RADARSAT-2 

and the collection of field / LiDAR data were unfortunately related to research project 

logistics such as the access to specific datasets through collaborations with the different 



space agencies. Also the last ALOS winter data were acquired in 2010 prior to the 

sensor failure. At the scale in which the study was carried out (i.e. Greater Kruger 

National Park region) it was expected the difference in vegetation structure between 

these different datasets (acquired at different years – 2009 to 2012) did not introduce 

any major noise or error in the results which is evident according to the results (e.g. 

2010 L-band model trained and validated with 2012 LiDAR produced results expected 

for this type of environment – Colgan et al., 2012 and Mathieu et al., 2013).    

- P9L19: 100m X 100m vs. P9L25: 100 X 100m. The authors would like to thank the 

reviewer for pointing this inconsistency out. All similar measurement entries have been 

standardised to the “100m X 100m” format. 

- P9L39: N?, R
2
?, RSE? Is the weight per tree or species? Apologies for the lack of 

explanation for these terms. The entire sentenced was modified to the follow: “Number 

of trees sampled =707; R
2
 = 0.98; relative Root Squared Error = 52%; ranging from 0.2 

– 4531 kg per tree”. The abbreviation “R
2
” was kept as is as it was clarified according to 

a previous comment. 

- P9L43: DBH? The term DBH was expanded to “Diameter above Breast Height” which 

was then followed by the abbreviation “DBH”. 

- P10L10: 25m X 25m vs. P10L26: 25m by 25m vs: P11L48: 25x25m. All inconsistencies 

in displaying these types of terms have been standardised throughout the text according 

to the “25m X 25m” format. 

- P10L10: “small DBH”. This has been changed to “low DBH”. The term “DBH” was 

elaborated upon according to the response to the comment P9L43. 

- P10L26: “DHB zones”. Apologies for the error. The words were changed to read “DBH 

zones”. 

- P10L44: Y? assuming N is the same previously N=707? The authors appreciate the 

reviewer‟s feedback. The Y/N here represents the presence of canopy cover (i.e. Y for 

Yes) or the absence of canopy cover (i.e. N for No). The text was modified to clarify this 

aspect. The reference to N is no longer used as potential confusion with N as number of 

sample. 

- P10L53: equation number? For instance: X+Y     (1). And equations are part of the text, 

so check for usage of punctuation marks. The authors thank the reviewer for this 

suggestion. We added an equation number (“Equation 3”) and we made it part of the 

text with the appropriate punctuation marks (“ƩY/169X100”) 

- P11L20: “5 X 5”, P11L33: CAO?, P11L37: r
2
? p? Apologies for the lack of explanation 

for the abbreviations. The following text corrections were made: “5m X 5m”, “Carnegie 

Airborne Observatory (CAO)”, “R
2
” and “p-value”. The R2 term was elaborated upon 

according to the response to the comment P2L4. 



- P12L42: “tonnes per hectare (t/ha)”, first proper introduction. The authors would like 

to thank the reviewer for pointing this matter out. The term “tonnes per hectare (t/ha)” 

was introduced on Page 3. 

-  P12L46: it is highly recommended to avoid using the same abbreviation for different 

things. H had to be introduced as horizontal polarization. Agreed, the abbreviation H 

was replaced with the abbreviation “HGT” to prevent confusion with the H from 

horizontal polarization. 

- P13 Section 3.4: Make sure all used abbreviations are properly introduced. If only used 

once then maybe no abbreviation is needed. MGD? SLC? SRTM? RMS? GDEM? 

Agreed, all abbreviations have been revised and appropriately introduced in detail. No 

abbreviation, however, was given for GDEM as it stood for Global Digital Elevation 

Map which may have been in conflict with the Digital Elevation Model (DEM) term. It is 

also used only one time. 

- P13L49: “3X3”. This term was changed to “3 pixel X 3 pixel” for clarity and for keeping 

in line with the abbreviation format used throughout the manuscript. 

- P14L13: “table 1”. Many thanks, the upper case was applied to all figure and table 

labels throughout the text. 

- P14L36: why not use the full polarimetric information available from Radarsat2? 

Maybe for comparison? The authors are grateful to the reviewer for bringing up this 

issue. The full polarimetric dataset was not used in this study as the goal of the study 

was to compare SAR datasets from the X-, C- and L-band frequencies, alone and in 

combination. We thus used similar standard products which could be compared and 

modelled in combination, and which were expected to produce the best results, i.e. dual 

polarisation HH-HV of winter (dry) datasets. Also full polarimetric modes with a large 

enough spatial coverage over our entire study area were not available for X- and L-band 

SAR datasets. For example, the fully polarimetric mode for ALOS PALSAR was limited 

in coverage (not continuous) and was only acquired during the spring season over our 

study area which was thus not ideal for our analyses (see results in Mathieu et al. 2013). 

Additionally, Mathieu et al. (2013) did report attempts to used polarimetric 

decompositions with the Radarsat-2 dataset, and showed that these did not yield higher 

modelling accuracies for mapping tree structural components compared the HH and 

HV polarisations. 

- P14L50: “found to be the most”. Agreed, the suggested change was made. 

- P14L52: RF? Apologies, RF is the abbreviation for Random Forest. This was added to 

the term when it was introduced in response to comment P8L14. 



- P15L10: “correlation coefficient (R
2
)”, little late? Agreed, R

2
 was introduced earlier in 

the manuscript in response to the comment P2L4. Additionally, R
2
 is the coefficient of 

determination and not the correlation coefficient. This error was corrected in the text. 

- P17L34: “[…]”, you might want to refer to Table 2 and the highlighted results for each 

metric. Agreed, to avoid restating the pertinent results for each metric, the following 

sentence was added to simplify matters: “(refer to the highlighted results for each metric 

in Table 2)”  

- P17L40: “[…]”, rather than listing the number, a little more description would be 

appreciated. Agreed, more descriptive but simple text was added to replace the numeric 

text. The following sentence was added: “[In comparison to the results for L-band alone, 

there was a relative improvement of 10% or greater for all three structural metrics in 

modelling accuracies]”. 

- P19L37: “however, still persist across riparian zones of minor tributaries.”? Is this 

highlighted in the figure(s)? How do we know? How/where do we see it in the figure? 

The authors understand the confusion caused as these minor tributary features are not 

particular prominent in the map products. The minor tributaries can be identified by 

the linear features which branch off the main ridge (encircled area in figure 9iv). A 

rectangle was added to point out the most visible example of these features in figure 9iv 

and was also mentioned in the text for clarity. 

- P19L49: AOI? Apologies, AOI stands for Area of Interest. This was included in the text. 

- P20 Number of experiments/evaluation runs used to generate boxplots? 5, 10, 100. All 

the observations / SAR pixels corresponding to the LiDAR coverage were used to build 

the boxplots. In total 17559 observations/pixels were used to generate the boxplots with 

the outliers removed.  This number was stated in the Figure 11 caption (“N=17 559”) in 

the figure captions document which accompanied the manuscript submission. “N” was 

changed in the caption to “Number of pixels” to avoid confusion. Additional text was 

included at the end of section 3.6 to clarify this matter. 

- P20L17: “spread”, variance? The authors will like to thank the reviewer for the 

suggestion. Agreed. The word “spread” was changed to “variance”. 

- Regarding all results, how are they obtained? Single values or averages over multiple 

observations? The authors will like to thank the reviewer for this comment. 

- How did you utilize the multi-temporal images for each SAR system? The authors would 

like to apologies if there was any confusion which came about regarding this matter. 

Multi-temporal image datasets for each sensor were not acquired or utilised in this 

study. We only acquired a single winter season mosaicked dataset for each of the SAR 

systems. These datasets differed in the fact that they were acquired at different years 

due to sensor constraints (e.g. ALOS PALSAR‟s last complete dataset for our area was 



2010 due to sensor failure in early 2011) and data access issues (RADARSAT images 

were only available from previous works).  

- P21 1
st
 paragraph could/should be moved to conclusions. Agreed, the 1

st
 paragraph of 

the discussion section was moved to the beginning of the conclusion section 

- P21L34: “of leaf-off of”, please rephrase. Agreed, the text was rephrased to state the 

following: “Despite the leaf-off conditions of most trees…” 

- P22L50: “will be needed”? Agreed, the text was modified to incorporate the reviewer‟s 

suggestion. 

- P22L50: “these results but these results”, please rephrase. Agreed, the text was 

rephrased to the following: “…exact cause of these trends but the overall results…” 

- P23? Last paragraph: the second part of it introduces so much new information 

particularly about areas and their characterizations, which have not been mentioned 

earlier in any way. The authors thank the reviewer for pointing out this concern. 

Unfortunately this section included a lot of areas which were mostly familiar with the 

people with the local knowledge of the area and for the surrounding park managers 

(Kruger National Park and Sabi Sands Game Reserve) who are also researchers as well. 

This newly introduced information pertaining to the local areas within our study area 

was vital to verify the accuracy of our models and mapped products especially within 

the context of distinct landscape features (ecca shale patches and fence line contrasts 

etc.) known by local managers.  This information can be removed from the manuscript, 

if recommended by the reviewer, to appeal to a wider audience who are not familiar 

with the study area.   

- P23L14: “with higher SEP values”. Agreed, the reviewer‟s suggestion was gladly 

accepted and the text modified accordingly. 

- P24L4: “key area of interest E”, so why hasn‟t it been used for experiments and 

evaluations? Agreed, the word “key” is misleading and was removed. AOI E 

represented a fence line contrast which consisted of high and low structural attributes 

within close proximity.  

- References: Please check and make sure that reference style uses „last name, first name 

initials, [first name initials, last name …]‟. The authors would like to thank the reviewer 

for pointing this inconsistency out. The references list has been standardised to the 

following format: „last name, first name initials [for the lead author], first name initials 

last name [for the secondary authors…]‟ (minus the comma after the second author‟s 

initials). This format is consistent throughout the reference list. 

- P28: RF reference, consider L. Breiman, “Random forests,” Machine Learning, vol. 45, 

no. 1, pp. 5-32, October 2001. Many thanks for the reference. The reference was added 



to replace the website reference (Breiman, 2003). The appropriate changes were made in 

the text of the manuscript to reflect this replacement. 

- P33: Urbazaev reference… Agreed, the reference recommended by the reviewer was 

added to replace the Urbazaev reference in the reference list. 

- Equation numbers for Appendix A and B: The appropriate Equation numbers were 

added and their numbering order was also updated in the text. 

- Figures and their captions - Figure 2: DBH? 10X10m, 25X25m, use same presentation as 

in text: The figure has been updated to display the changes suggested by the reviewer. A 

full name for DBH was also given in the figure text. 

- Figure 3, 4: N? The authors agree with the reviewer‟s suggestion. “N” refers to the 

number of observations of the corresponding LiDAR metric and ground metric 

measurements used to make the graphs. This abbreviation “N” was expanded to 

“Number of observations” in the caption text. 

- Figure 7iii: “50-100” to “>50”. Any reason that this interval is so large compared to the 

others? Add abbreviations from figure to caption.  The class intervals were chosen to 

best maximise the visual representation of the CC distributions which would 

complement the range expected on the ground. The study area is a landscape which has 

mostly a low to medium CC distribution with few high CC areas. Thus smaller intervals 

at the top of the CC range will make little difference to the overall landscape 

distribution of the CC trends and might even dilute the visibility of the lower to medium 

CC classes which are more prominent. Area of denser CC would also be more difficult 

to visualise. The abbreviations from the figure were updated in the caption as 

recommended by the reviewer. 

- Figure 8: legend for colours? Mentioned regions of plot in text could be marked and 

labelled. Caption: “region of AOI”? so AOI cannot be area of interest then.  The authors 

appreciated the feedback. A colour legend (e.g. “Low point density to High point 

density”) was added to the figure 8. The following text was added on page 18, first 

paragraph of Section 4.2 to give more information in the manuscript regarding Figure 8 

(“Figure 8 shows the AGB vs. CC scatterplot for AOI „A‟, a dense forested site”).  

Additionally, white labels (“Tall tree forests” and “Coppicing thickets”) were added to 

figure 8 to highlight the concepts discussed in the text. The words “region of” in the 

Figure 8 caption was removed as it caused confusion. 

- Recommended to mark areas in Figure 7. Otherwise it is quite difficult to see and 

compare, particularly with this over-/underestimation comparison. Also not 100% sure 

what you are trying to show here, as this over-/underestimation make it rather difficult.  

The authors appreciate the comment. Over-/underestimation figures (Figures 9 and 10) 

were added to provide a visual representation of the model‟s performance in the two 



main vegetation conditions (dense and sparse vegetation). These figures set up the more 

quantitative results of the boxplots in Figure 11. The authors still believe in the merit of 

keeping Figures 9 and 10 but if the potential confusion is too great for readers, the 

authors can consider removing the Figures 9 and 10 (and associated text), if the reviewer 

requests it.  In the meantime, the AOI extents represented in Figures 9 and 10 have been 

roughly outlined as boxes near the letter „A‟ and over the letter „C‟ in Figure 7iii. This 

also removes the confusion of which AOI „C‟ is being shown in Figure 10 as multiple „C‟ 

AOIs have been shown in Figure 7 to indicate the different patches of gabbro intrusions. 

The caption for Figure 7 has also been updated. 

-  Figure 9: colour legend, colours are similar, so hard to understand difference? The 

author would like to thank the reviewer for the comment. It is however, the authors‟ 

honest opinion that the colour legend used in both Figure 9 and 10 were distinct enough 

to separate the main error classes: overestimation, negligible error and underestimation. 

The minor over- and underestimation error classes, through different shades, can be 

distinguished in both figures.   

- Figure 10: colour legend as in Figure 9, which area C in Figure 7, there are 2? The same 

treatment was considered for Figure 10‟s colour legend as in Figure 9. The confusion 

regarding which AOI „C‟, in Figure 7, was represented in Figure 10 was resolved by 

adding their extent boxes in Figure 7. 

- Table 2: if you provide the measure of a unit in the heading for each sub-table, why give 

it for each table entry again? Content of table is okay, it just feels a little unnatural to 

read. Quick comparison and evaluation for each metric is tricky as you have to scan 3 

lines. This is of course a personal preference. The authors would like to thank the 

reviewer for the comment. The measurement units within each of the sub-tables have 

been removed as the unit of measure is already mentioned in the heading of each sub-

table.  The authors agree with the reviewer‟s comment about the awkwardness of Table 

2. Another alternative was to reposition the sub-tables into a single table with the rows 

being the different frequencies/frequency combinations and the columns being the 

structural metrics. The new version of the table replaced the existing version. 

 

Reviewer #2: 

- We would like to thank the reviewer for the positive comments pertaining to our manuscript. 

The feedback is also greatly appreciated. 

 

Main Points/concerns: 

- The part concerning the SAR analysis and modelling is not clear which makes the 

procedure key element vague. The author appreciates the reviewer‟s comments. We 



believe that the revisions made in response to the main points, below, and the specific 

comments have added clarity to the SAR analysis and modelling sections. 

- I believe a detailed discussion of the merits of RF over other modelling methods will be 

very helpful.  The authors agree with the reviewer. Although the performance of RF was 

tested against other algorithms in the Naidoo et al., 2014 IGARSS paper, a brief 

paragraph was added to the top paragraph on page 15 to highlight the advantages of RF 

over other machine learning algorithms. The following text was added: “Unlike other 

traditional and fast learning decision trees (e.g. Classification And Regression Trees or 

CART), RF is insensitive to small changes in the training datasets and are not prone to 

overfitting (Ismail et al., 2010; Prasad et al., 2006).  Additionally, RF is less complex and 

less computer intensive in comparison to the high levels of customisation required for 

Artificial Neural Networks (ANN) and the long „learning‟ or training times for Support 

Vector Machines (SVM) (Anguita et al., 2010). RF requires two main user-defined 

inputs – the number of trees built in the „forest‟ or „ntree‟ and the number of possible 

splitting variables for each node or „mtry‟ (Ismail et al., 2010 & Prasad et al., 2006).” 

- Modelling and analysis steps of RF were not fully discussed and the relation between the 

SAR data and retrieved structural elements is not clear. The modelling and analysis 

steps of the RF were elaborated upon in greater detail to remedy this issue. These 

detailed additions were made in section 3.5.  Preliminary work indicated that the LiDAR 

was the preferred source for the calibration and validation of the SAR dataset modelling 

instead of the collected ground data (see last comment of this main points section for 

more information). Two sentences were added, in the discussion section, which 

summarised the relationship between ground data and the SAR directly (minus LiDAR 

use). 

- The SAR data used in the modelling was not clear and did the authors use Intensity, 

Phase or the Complex SAR data in the modelling? Intensity SAR datasets were only 

used in the modelling procedures – corrections were made in the methodology sections 

to reaffirm this fact.  The SAR datasets acquired for this study was stated in detail in 

Table 1. 

- The methodology presented in this paper can only be applied if the LiDAR data is 

available along with the SAR data. During our preliminary analyses, we correlated the 

ground collected metric results (in this case, CC at the 100m plot scale) directly to the 

SAR dataset (in this case HH and HV L-band intensity data) and we found decent 

results (R
2 

= 0.55; RMSE = 17.57%) but were not as high as when the LiDAR dataset 

was used an intermediate upscaling dataset (R
2
 = 0.77; RMSE = 10.59%). If ground data 

is only available then it can be used without upscaling to the LiDAR which would, 

however, compromise the overall performance of the model. We used LiDAR as the 



source of model calibration and validation (after using the field data to validate the 

accuracy of the LiDAR first) as it yielded the highest accuracies in this study. 

  

Specific comments: 

- P1L48: SAR phase is sensitive to atmosphere and cloud but intensity is not. It is not 

clear in the analysis which component of SAR data was used. The authors appreciate the 

comment. The insensitivity of the SAR intensity to atmosphere and cloud was added to 

the text, on page 4; 2
nd

 paragraph, to clarify this fact: [“…offers an all-weather capacity, 

if SAR intensity information was implemented, to map…”]. The SAR intensity 

information was used in this study‟s analysis. This was clarified in the methodology 

section of the text.  

- P6L17: wavelength (~15cm L-band)??? The wavelength of ALOS PALSAR L-band is 

23.6cm an frequency 1270 MHz. Please cite references on the specifications of the SAR 

data used in this analysis. The authors apologise for the incorrect information displayed. 

The correct frequency was added (“~23cm L-band”) and references were added to 

support the SAR dataset specifications in the Table 1 in the methodology section. 

- P6L57: Is the accuracy of the proposed methodology depending on the canopy species? 

Not only on spatial distribution and density? The authors appreciate the comment made 

by the reviewer. It is believed by the authors that the accuracy of the methodology 

would be predominately influenced by the broader landscape group distributions (e.g. 

grasslands, woodlands, thickets and forest) rather than the canopy species (e.g. Acacia 

versus Combretum species) though the shape of the individual trees, which is a function 

of the tree‟s species, maturity and surrounding disturbances (e.g. coppicing through 

harvesting), could additionally influence the results. This needs to be explored in greater 

detail which falls beyond the scope of this paper. 

- P8L18: What the authors mean by “the LiDAR-derived counterparts (error statistics 

and distribution)”. The LiDAR derived counterparts refer to the LiDAR derived woody 

structural metrics/maps which was subtracted by the SAR derived woody structural 

metrics/maps to achieve the error maps discussed in section 3.6. The following was 

added to the text for clarification: “The SAR-derived woody structural metrics were 

then validated using the LiDAR-derived woody structural metrics (CC, TCV and AGB) 

to ascertain error statistics and error distribution.” 

- P8L57: the author stated that they made the observations in dry season (winter) but the 

LiDAR observations were made is late summer (table 1). What is the effect of this 

divergence on the overall results, especially that LiDAR interacts with the leaves and 

fine branches of the canopy?   The LiDAR is the reference dataset. It was used to assess 

woody structural metrics which are generally required and measured by managers and 



ecologists (cover, woody biomass, volume from trees with leaves). A LiDAR dataset 

acquired in winter would not properly assess these woody structural metrics. We 

selected SAR datasets acquired in winter because the dry season have been shown to be 

the best to model cover and biomass (no noise from water content), see e.g. Mathieu et 

al., 2013 in the region, so winter SAR datasets act as the best predictor or proxy of the 

LiDAR-based metrics acquired when trees have leaves. This is not a source of error as 

such. One source of error in our reference dataset is the fact that the LiDAR was taken 

during the wet-dry transition season, and the yellowing or senescence process had just 

started (based on field observations) at that time especially in the Kruger region. This 

information was incorporated in the paragraph on the sources of error in the discussion 

section.   

- P8L57: the SAR acquisition dates have a gap of one or two years. Is the canopy 

parameters didn‟t change during these years? i.e. what effect on the overall accuracy of 

modelling? The authors agree with the comment brought up by the reviewer. As with 

the comment above, the temporal difference in the acquisitions would have introduced a 

margin of error to the overall modelling results but the main tree structure would have 

been preserved between the years (which allow for the backscatter interactions) if the 

trees in the area haven‟t been extensively harvested. The authors relied upon the fact 

that the imagery were consistently acquired during the winter season (minimal 

interference) and that the study area did not undergo any major changes in the 

landscape (local knowledge of the area from the authors).  The fact that the ALOS 

PALSAR satellite was not operational during this time was also a pity so the use of the 

selected L-band datasets was unavoidable. This information was incorporated in the 

paragraph on the sources of error in the discussion section. 

- P9L39: briefly explain the values in brackets. The abbreviations (N, RSE etc.) were 

expanded and text added to bring extra clarity to the values. 

- P10L52, identify the equation by “eqn.1”. A correction was made in this regard. The 

equation was identified as “Equation 1”. 

- P12L53: The validation of LiDAR against Ground truth AGB measurements (R2=0.63) 

and the validation of SAR against LiDAR (0.83). What do you expect of the validation of 

SAR against Ground truth measurements “the actual value I assume”? The authors 

appreciate the reviewer‟s suggestion. Preliminary results utilising L-band SAR (best 

performing single SAR frequency) was obtained by modelling AGB (35% training, 65% 

validation), in RF, using the ground truth dataset, AGB collected at 100m plots, as the 

calibration and validation (cal/val) data sources and  the L-band SAR intensity (HH and 

HV) as the input parameters. We found decent results (R
2 
= 0.55; RMSE = 15.36t/ha; see 

graph below) but they were not as high as when the LiDAR dataset was used as an 



intermediate upscaling dataset (R
2
 = 0.78; RMSE = 6.05t/ha). The LiDAR was seen as 

the most appropriate dataset for model cal/val. 

 

- P13L53: …Please explain how the spatial resolution of ALOS is 12.5m as stated in the 

specified line. The authors understand the reviewer‟s concern. After the multi-looking 

step in the SAR processing, the three (X-, C- and L-band) SAR datasets were resampled 

to the final resolutions (see new Table 2). Oversampling factors were applied to each 

dataset, with respect to the resolution of the DEM used, to achieve this resampling 

which was conducted as part of the “gc_map” module in the GAMMA DIFF & GEO 

processing chain (http://members.chello.nl/~r.sugardiman/html/gc_map.html). 

Additional text was added to section 3.4 to clarify this matter. An additional table (a new 

Table 2) was added to document the changes in dataset spatial resolution throughout the 

different processing steps. 

- P14L40, the spatial resolution “a varying number of data records…” please explain 

that. If the authors resampled all the data first then the aggregated grid cells should be 

equal. If the authors made the grid first, then how the authors co-registered the grid 

cells?  The coverage of  some of the SAR datasets didn‟t completely match the LiDAR 

coverage (as was the case with the C-band coverage which excluded the upper strip of 

LiDAR in Figure 1) and some of the SAR datasets had gaps between some of the 

acquired scenes (particularly the X-band coverage between two scenes). This difference 

http://members.chello.nl/~r.sugardiman/html/gc_map.html


in coverage resulted in some of the grid cells (which was developed according to the 

LiDAR coverage) being excluded from the analyses.  The different SAR datasets were 

only clipped to the common coverage extent for the mapping process only but were kept 

separate with their full extents during the data extraction and modelling processes – this 

information was added to the manuscript in section 3.4 and section 3.5. The SAR 

datasets differed in coverage, especially C-band and L-band, so any resampling would 

not make the number of grid cells available consistent.  Since the grid was developed in 

relation to the LiDAR (the grid started from the upper left most pixel position of the 

LiDAR‟s full coverage) and that the LiDAR was well aligned with the SAR datasets, any 

registration issues which did arose may have been negligible.  

- P14L52 to P15L4: The modelling procedure is not clear; please explain with further 

details to facilitate the reproduction for other researchers. Agreed, this section of the 

manuscript has been reworked and expanded to give more detailed information on the 

RF modelling process. 

- P15L36, Figure 9 and Figure 10: The main advantage of using SAR is the 3d detection 

ability (i.e. AGB and TCV) and you chose to present CC for accuracy check, which can 

be easily estimated using other remote sensing methods. Why didn‟t you present an 

accuracy check of AGB and TCV? This should give an insight on the actual advantage 

of using SAR.  The authors understand the issue raised by the reviewer. In response, we 

replaced the original CC Error Figures 9 and 10 with the TCV counterparts. 

Additionally we added AGB and TCV error statistics to Table 4 (the old Table 3). The 

text associated with these figures and tables have been changed extensively in the text 

(methods, results and discussion sections). The CC box plots (Figure 11), however, 

remained unchanged as the CC ranges, coupled with vegetation height for a 3D 

interpretation, best illustrated the different vegetation structural cohorts (e.g. sparse 

forests and sparse veld, bush encroached thickets and closed forests etc.). 

- P15L38: Why did you use TCV in Figure 6 for model accuracy verification? While you 

stated that it lacked meaningful units. And P12L28 the author state that TCV was not 

validated with ground collected data. The authors appreciate the comments made by the 

reviewer. TCV was chosen merely to complement the results of Table 2 which showed 

TCV yielding the highest accuracies compared to the other metrics. The TCV metric 

results, in Figure 6, showed a tighter and neater distribution in relation to the 1:1 line 

than other metric scatterplots, which made the comparison between the different SAR 

frequency and combinations easier. TCV was not validated due to the fact that it was 

particularly hard to measure the TCV metric on the ground as it was more related to 

the point cloud dataset obtained by the LiDAR.  



- P17L34: the authors repeating the information in Table 2. Agreed, the repeated text was 

removed from the manuscript. 

- P17L40: It will be much easier to read if the authors presented the improvements in 

table form. Agreed, but, as requested by one of other reviewers, this part of the text was 

simplified and modified to be more descriptive rather than stating numeric 

improvements. 

- P18L32, L34, L38: is it (ABG) or (AGB). The authors would like to thank the reviewer 

for pointing this inconsistency out. The correct abbreviation is “AGB” which has now 

been standardised in the text. 

- P19L20: the authors repeating the information in Table 3 and figures 9,10,11. It would 

be more interesting and easier to read if the authors gave an insight of the results in the 

discussion. For example, if the authors recommended a favourable CC boundary to use 

SAR data and the expected accuracy of the results within this boundary, it would be 

much more meaningful. The authors appreciate the suggestions made by the reviewer. 

Unfortunately, the observed trends suggest more complex SAR interactions with the 

landscape which requires further investigation (e.g. through the simulation of SAR 

backscatter in a simulated environment) and could not be certainly summarised with 

convenient boundaries and thresholds. Such boundaries will only be speculative but 

additional information regarding broader SAR dataset usage recommendations were 

given on page 23, at the end of the first paragraph. 

- P22L51: the authors recommended using L-band in dense forested environment while 

the accuracy shown in figure 9 is very poor? Please explain. Also please define “dense 

forested”. How dense? Please give a metric value. Figure 9 did not report accuracy 

values, but showed over and underestimation of cover for various SAR frequency 

combinations. The L-band results did show some signs of major overestimation in the 

dense ridge but the results were considerably better than the X- and C-band results 

which showed widespread major underestimation. We made clear that the performance 

was ascertained relative to the other frequencies in the text. Figure 11 also illustrated a 

better performance of L-band in dense forested conditions. According to the criteria 

used in Figure 11ii, a “dense forested” environment was defined as “>70% CC”. This 

was added to the text. 
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Abstract 

Structural parameters of the woody component in African savannahs provide estimates of 

carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary 

source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are 

at risk of over utilisation.  The woody component can be characterized by various 

quantifiable woody structural parameters, such as tree cover, tree height, above ground 

biomass (AGB) or canopy volume, each been useful for different purposes.  In contrast to 

the limited spatial coverage of ground-based approaches, remote sensing has the ability to 

sense the high spatio-temporal variability of e.g. woody canopy height, cover and biomass, 

as well as species diversity and phenological status – a defining but challenging set of 

characteristics typical of African savannahs.  Active remote sensing systems (e.g. Light 

Detection and Ranging – LiDAR; Synthetic Aperture Radar - SAR), on the other hand, may be 

more effective in quantifying the savannah woody component because of their ability to 

sense within-canopy properties of the vegetation and its insensitivity to atmosphere and 

clouds and shadows.  Additionally, the various components of a particular target’s structure 

can be sensed differently with SAR depending on the frequency or wavelength of the sensor 

being utilised.  This study sought to test and compare the accuracy of modelling, in a 

Random Forest machine learning environment, woody above ground biomass (AGB), canopy 

*Manuscript
Click here to download Manuscript: Manuscript_V2.docx Click here to view linked References
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cover (CC) and total canopy volume (TCV) in South African savannahs using a combination of 

X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar datasets.  

Training and validation data were derived from airborne LiDAR data to evaluate the SAR 

modelling accuracies.  It was concluded that the L-band SAR frequency was more effective in 

the modelling of the CC (coefficient of determination or R2 of 0.77), TCV (R2 of 0.79) and 

AGB (R2 of 0.78) metrics in Southern African savannahs than the shorter wavelengths (X- 

and C-band) both as individual and combined (X+C-band) datasets.  The addition of the 

shortest wavelengths also did not assist in the overall reduction of prediction error across 

different vegetation conditions (e.g. dense forested conditions, the dense shrubby layer and 

sparsely vegetated conditions).  Although the integration of all three frequencies (X+C+L-

band) yielded the best overall results for all three metrics (R2=0.83 for CC and AGB and 

R2=0.85 for TCV), the improvements were noticeable but marginal in comparison to the L-

band alone.  The results, thus, do not warrant the acquisition of all three SAR frequency 

datasets for tree structure monitoring in this environment. 

Keywords: Woody structure, Savannahs, SAR, Multi-frequency, LiDAR, Random Forest   

 

1. Introduction - Background, Aims and Objectives 

Structural parameters of the woody component in African savannahs provide estimates of 

carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary 

source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are 

at risk of over utilisation (Wessels et al., 2011; Wessels et al., 2013).  The woody component 

in African savannahs is an important physical attribute for many ecological processes and 

impacts the fire regime, vegetation production, nutrient and water cycles (Silva et al., 2001).  

The density of woody plants can also severely compromise the availability of grazing 

resources, valuable for livestock populations and related livelihoods, through bush 

encroachment (Wigley et al., 2009).  Within the context of climate change, the 

sequestration of carbon by growing vegetation is a significant mechanism for the removal of 

CO2 from the atmosphere (Falkowski et al., 2000; Viergever et al., 2008).  Understanding 

how carbon is stored as carbon sinks in vegetative biomass and thus quantifying this 

standing biomass is central to the understanding of the global carbon cycle.  Vegetation 
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clearing (e.g. for cultivation) and degradation (e.g. for timber or fuelwood) and the burning 

of biomass, which are prevalent in developing regions and savannah woodlands of Southern 

Africa, can alter carbon stocks and emissions (Falkowski et al., 2000; Viergever et al., 2008).  

Based on the important environmental implications revolving around woody vegetation, 

there are growing initiatives aiming at forest and woodland conservation that require its 

active inventorying, mapping and subsequent monitoring such as the Reducing Emissions 

from Deforestation and Forest Degradation programme (REDD+) (Corbera & Schroeder, 

2011; Kanowski et al., 2011; Asner et al., 2013).  

 

The woody component can be characterized by various quantifiable woody structural 

parameters, such as woody canopy cover (CC), tree height, above ground biomass (AGB) or 

total woody canopy volume (TCV), each been useful for different purposes.  AGB is defined 

as the mass of live or dead organic matter above the ground surface (excluding roots etc.) 

and is usually expressed in tonnes per hectare or t/ha (Bombelli et al., 2009).  Woody 

canopy cover (i.e. the percentage area occupied by woody canopy) is a key parameter used 

in monitoring vegetation change and can be combined with tree height to estimate 

approximate AGB (Colgan et al., 2012).  Lastly, total woody canopy volume indicates the 

volume of vegetation present within the vertical profile and serves as an alternative proxy 

for biomass density and distribution.  Further, these metrics, both 2D (CC) or 3D (TCV and 

AGB) in nature can provide useful information regarding the prediction of density, habitat 

requirements and biodiversity assessments for conservation (Bradbury et al., 2005; Mueller 

et al., 2010; Jung et al., 2012).   

 

Remote Sensing has been used in numerous studies as the preferred tool for quantifying 

and mapping woody structural features due mainly to its superior information gathering 

capabilities, wide spatial coverage, cost effectiveness and revisit capacity (Lu, 2006).  In 

contrast to the limited spatial coverage of ground-based approaches, remote sensing also 

has the ability to sense the high spatio-temporal variability of e.g. woody canopy height, 

cover and biomass, as well as species diversity and phenological status – a defining but 

challenging set of characteristics typical of African savannahs (Cho et al., 2012; Archibald & 

Scholes, 2007; Mills et al., 2006).  Woody structural parameters have been successfully 
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mapped using passive optical data at fine and coarse spatial scales (Boggs, 2010; Castillo-

Santiago et al., 2010) by making use of textural (the local variance of an image related to its 

spatial resolution – Nichol & Sarker, 2011) and/or spectral (e.g. spectral vegetation indices 

related to vegetation structure – Johansen & Phinn, 2006) approaches.  Passive optical data 

are, however, adversely affected by high spectral variation, which refers to the change in 

spectral properties or character of a target, due to seasonal dynamics, clouds and haze. 

These spectral variations are prevalent in the rainy season of African summers with veld 

fires in the dry winter, and in shadowed areas, which results from terrain topography and 

tree canopies, at fine resolutions and in mixed wood-grass pixels at the medium and coarser 

resolutions.  Active remote sensing systems such as Light Detection and Ranging (LiDAR) and 

Synthetic Aperture Radar (SAR), on the other hand, may be more effective in quantifying the 

savannah woody component because of their ability to sense within-canopy properties of 

the vegetation and its insensitivity to atmosphere and clouds and shadows. 

 

Airborne LiDAR systems provide high-resolution geo-located measurements of a tree’s 

vertical structure (upper and lower storey) and the ground elevations beneath dense 

canopies. Although airborne LiDAR provides detailed tree structural products it relies on the 

availability of aircraft infrastructure, which is not always available in Africa.  Satellite LiDAR is 

also currently not available. On the other hand, SAR systems provide backscatter 

measurements that are sensitive to forest spatial structure and standing woody biomass 

due to its sensitivity to canopy density and geometry (Sun et al., 2011; Mitchard et al., 

2011).  A SAR-based approach offers an all-weather capacity, when using SAR intensity, to 

map relatively large extents of the woody component, which cannot be easily achieved with 

airborne LiDAR (Mitchard et al., 2011).      

 

Polarization, which refers to the orientation of the emitted and received signal, and 

frequency of SAR data play important roles in sensing vegetation structure.  Multi-polarized 

SAR systems emit and receive in HH, HV, VH and/or VV with H referring to a horizontal wave 

orientation and V referring to a vertical wave orientation.  This allows the more complete 

characterisation of the scattering properties of ground targets which in turn, enables the 

extraction of greater structural information.  For instance, HV or VH are better linked to 
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canopy structure because of the volumetric water content in the canopies architecture 

(Schmullius & Evans, 1997) which brings about volumetric scattering within the canopy and 

its “random” scatterers, which tends to change the polarization of the emitted wave (e.g. H 

to V or V to H).  The various components of a particular target’s structure can be sensed 

differently with SAR depending on the frequency or wavelength of the sensor being utilized.  

For example when sensing vegetation, the signal of shorter SAR wavelengths, such as X-

band and C-band, interact with the fine leaf and branch elements of the vegetation resulting 

in canopy level backscattering with limited signal penetration.  The signal of longer SAR 

wavelengths, such as P-band and L-band, on the other hand, can penetrate deeper into the 

vegetation with backscatter resulting from signal interactions with larger vegetation 

elements such as major branches and trunks (Vollrath, 2010; Mitchard et al., 2009).  

Consequently, the L-band frequency has been proven in numerous studies to be the most 

preferred (Carreiras et al., 2013; Mitchard et al., 2012; Santos et al., 2002; Ryan et al., 2011) 

and the most effective (Lucas et al., 2006) in estimating woody structure, particularly AGB 

with a higher saturation level at 80-85 tonnes per hectare compared to the shorter 

wavelengths, in forested and savannah woodland environments. However, since woodlands 

and savannahs possess a sporadic combination of fine and large woody elements within 

individual tree canopies, and a heterogeneous distribution of large trees and smaller shrubs 

throughout the landscape, we hypothesized that combining the capabilities of these 

different SAR frequencies under a multi-sensor approach may enhance the sensing of the 

savannah woody element (Schmullius & Evans, 1997).  Various studies have ‘fused’ or 

integrated multiple SAR frequency and polarimetric datasets for modelling and mapping of 

tree structural attributes across various environments from the coniferous temperate 

forests of North America to mangrove forests and to the open-forest woodlands of Australia 

(Tsui et al., 2012; Mougin et al., 1999; Collins et al., 2009).  Despite the success achieved in 

these various studies via combining different SAR wavelengths (Mougin et al., 1999; Tsiu et 

al., 2012), the combined strength of both shorter and longer SAR frequency sensor 

technologies, however, have yet to be assessed in the heterogeneous and complex 

Southern African savannah environment.       
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This study sought to test and compare the accuracy of modelling woody above ground 

biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs 

using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS 

PALSAR) radar datasets.  Training and validation data were derived from airborne LiDAR 

data to evaluate the SAR modelling accuracies.  The research questions were: 

1) How do various SAR frequencies (X- or C- or L-band) perform in predicting woody 

structural parameters (CC, TCV and AGB) in southern African savannahs? 

2) Does combining SAR backscatter through different frequency combinations or 

scenarios (X+C or X+L or C+L band or X+C+L-band) improve the predictions of the 

various woody structural parameters and by how much? 

We hypothesized that the combination of shorter wavelength, ~3cm X-band 

and ~5cm C-band, with longer wavelength, ~23cm L-band, SAR datasets, in a 

modelling approach, will yield an improved assessment of woody structure. This idea 

is based on the assumption that X- and C-band SAR signals interact with the finer 

woody structural constituents such as leaves and finer branchlets, typical of the 

shrubby/thicket layer, while the L-band SAR signal interact with the major tree 

structural components such as trunk and main branches which are typical of 

forested areas.   

3) Finally, through the examination of the patterns of the prediction error, within the 

landscape for the different SAR frequency models, can the hypothesis, proposed 

above, be confirmed?  

More specifically, the investigation of the interactions of the different SAR 

frequencies, and their possible combinations, across the different vegetation 

patterning and structural classes, such as grasslands, thickets and forests, will pin-

point the effective application of the different SAR frequencies and their possible 

combinations in Southern African savannah landscapes. 

The study is broken down into various sections.  Section 2 describes the study area under 

investigation.  Section 3 and subsections focus on the material and methodology which 

outlines the remote sensing datasets used, field datasets collected, LiDAR and SAR pre-

processing and metric generation, modelling protocols, mapping and finally validation and 
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error assessment. Section 4 describes the modelling, mapping and error results while 

sections 5 and 6 discuss the main study outcomes and concluding remarks, respectively.  

 

2. Study Area 

The Kruger National Park regional study area is located in the Lowveld region of north-

eastern South Africa, within the savannah biome (31°00’ to 31°50’ E longitude, 24°33’ to 

25°00’ S latitude).  The study area included portions of the southern Kruger National Park, 

the neighbouring Sabi Sands Private Game Reserve, and the densely populated 

Bushbuckridge Municipal District (BBR) (Figure 1).   The area is characterised by short, dry 

winters and a wet summer with an annual precipitation varying from 235mm and 1000mm, 

and is representative of southern Africa savannahs.  This rainfall range, together with 

grazing pressures, fire, geology, mega-herbivore activity and anthropogenic use (fuelwood 

collection and bush clearing for cultivation) govern the vegetation structure present in this 

biome.  The vegetation comprise particularly of Clay Thornbush, Mixed Bushveld and Sweet 

and Sour Lowveld Bushveld (Mucina and Rutherford, 2006).  The woody vegetation in the 

region is generally characterized as open forest with a canopy cover ranging from 20-60%, a 

predominant height range of 2 to 5m and biomass below 60 t/ha (Mathieu et al., 2013).  The 

Sabi Sands Wildetuin consists of a group of private owners with a strong eco-tourism based 

approach to conservation with the Kruger National Park being more geared towards large-

scale public conservation via the inclusion of large tracts of land for protection.  The 

communal rangelands of BBR are primarily utilised for livestock ranching, fuelwood 

harvesting and various non-commercial farming practices (Wessels et al., 2011; Wessels et 

al., 2013).  This study region was selected to represent the differences in the woody 

structure (e.g. riparian zones, dense shrubs, sparse tall trees etc.) and spatial patterns of the 

different land management and disturbance regimes (communal rangeland management, 

private game reserve and national park management), varying vegetation types (lowveld 

savannah and mixed forest fringe species) and geological substrates (granite and gabbro). 

 

Insert Figure 1 
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3. Materials and Methodology 

The general methodology sought to develop woody structural metric models between 

collected field data and airborne LiDAR data for detailed localised metric maps (25m spatial 

resolution to match the field data plots). These LiDAR derived metric products (CC, TCV and 

AGB) were then used as the ground truth for model up-scaling at the regional scale using 

multi-frequency SAR intensity backscatter datasets (X-, C- and L-band).  This was achieved by 

integrating the LiDAR and SAR datasets with the use of a sampling grid and the extracted 

values were subjected to modelling using the Random Forest (RF) algorithm (Breiman, 

2001).  Different SAR frequencies were modelled in the form of various SAR frequency 

combination scenarios.  The SAR-derived woody structural metrics were then validated 

using the LiDAR-derived woody structural metrics (CC, TCV and AGB) to ascertain error 

statistics and error distribution.      

 

3.1 Remote sensing data 

Five TerraSAR-X X-band dual-polarized (HH and HV), four RADARSAT-2 C-band quad-

polarized (HH, VV, VH, and HV) and two ALOS PALSAR L-band dual-polarized (HH and HV) 

SAR intensity datasets (summarized in Table 1) were acquired to cover the study transect 

shown in Figure 1.  Only dual polarized SAR data (HH and HV) was used because the HV 

polarization parameter is known to better model the structure of woody vegetation through 

volumetric backscatter interactions, while HH is also reported as been sensitive to structure 

although to a lesser extent than the cross-polarized band (Collins et al., 2009; Mitchard et 

al., 2009; Mathieu et al., 2013).  Further, HH/HV was the common polarization configuration 

available for all three sensors.  Winter seasonal SAR acquisitions were chosen because 

winter in the Lowveld is the dry season and exhibits the lowest level of moisture in the 

landscape.  The tree leaves are off along with dry soil and dry grasses.  This reduced the 

chance of interference of the SAR signal with variable moisture content while allowing a 

greater penetration of microwaves into the canopies. In the same region Mathieu et al., 

(2013) reported the best retrieval of woody structural parameters with RADARSAT-2 data 

acquired in winter. An extensive airborne LiDAR dataset (total coverage of c.a. 63000 ha) 

were acquired for this study (Figure 1) by the Carnegie Airborne Observatory-2 AToMS 
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sensor during April-May 2012.  For our datasets, the LiDAR was operated at a pulse 

repetition frequency of 50 kHz with a 0.56m laser spot spacing and an average point density 

of 6.4 points per m2 from a flying altitude of 1000m above ground level (Asner et al., 2012). 

In comparison with the LiDAR dataset, the SAR images were acquired during the winter 

2009 (RADARSAT-2), 2010 (ALOS PALSAR), and 2012 (TerraSAR-X). Unfortunately, the last 

ALOS PALSAR winter scenes were acquired during 2010 in the study area, and no RADARSAT 

imagery were available closer to 2012. 

 
3.2 Field data 

Field data were collected in April – May, and November – December 2012 across 38 

sampling sites (in Figure 1).  These sites provided ground truth data to model and validate 

the LiDAR derived woody structural metric products to be used to model the SAR-based 

woody structural metrics.  Ground sampling sites were located to represent the diversity in 

woody structure of the different vegetation types, management regimes, and geological 

substrates mentioned above.  Each site covered a 100m X 100m area and vegetation 

measurements were taken from four clustered 25m X 25m sampling plots (with minimum 

distance > 50m, identified from geostatistic range assessments, Wessels et al., 2011), 

located at each of the four corners of the site (Figure 2).  The 100m X 100m sites were 

positioned using high resolution imagery from Google Earth as well as earlier LiDAR datasets 

acquired in 2008 – 2010 to ensure that they are representative of the surrounding 

landscape. 

 

Field AGB estimates were derived from height and stem diameter measurements using an 

allometric biomass estimation equation (Colgan et al., 2013 – Equation 1 in Appendix A).  

The allometric equation was developed following destructive harvesting of 17 savannah tree 

species present in the study area (Number of trees sampled =707; R2 = 0.98; relative Root 

Square Error = 52%; ranging from 0.2 – 4531 kg per tree, Colgan et al., 2013). Tree height 

was measured using a height pole and Laser vertex/rangefinder, while stem diameter was 

measured using callipers and Diameter above Breast Height (DBH) tape.  Stem diameter was 

measured at 10cm above the ground and for multi-stemmed plants every individual stem 

was measured as separate individuals (e.g. species such as Dichrostachys cinerea).  
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Due to logistical and time constrains associated with measuring every tree within the 

sample plot two main stem diameter ‘zones’ were identified inside the site to increase 

sampling efficiency while still yielding representative quantities of biomass estimates (Figure 

2).  The first diameter zone was the 25m X 25m plot where all trees with a stem diameter of 

5cm and greater were recorded, provided that they had a height of 1.5m or greater, and the 

second diameter zone was a 10m X 10m area positioned at the inner corner of the 25m X 

25m plot where all trees with a stem diameter between 3 and 5cm and greater than 1.5m 

were also recorded. This allowed catering for a few sites, mostly in the communal lands, 

where most of the AGB consisted of dense stands of multi-stemmed plants (coppicing) with 

low DBH (Matsika et al., 2012).  A total of 152 25m X 25m biomass plots were sampled.  

Individual tree level AGB was derived using Colgan’s allometric equation (Colgan et al., 

2013).  AGB was then calculated for each diameter zone by summing the relevant tree level 

AGB values which was then subjected to particular AGB up-scaling factor (Equation 2 in 

Appendix B).  The complete plot level AGB was calculated by summing all the corrected AGB 

subtotals for the stem diameter zones.    

 

One or two sampling plots were chosen for most sites for CC data collection – the north east 

25m X 25m plot and/or the south west 25m X 25m plot (DBH zone 2 – Figure 2).  CC values 

were estimated following the vertical densitometer protocol (Stumpf 1993; Ko et al., 2009), 

conceptually a point intercept sampling approach, and one of the most time-efficient 

techniques to implement.  The point intercept method is a small angle approach well suited 

to measure the vertical canopy cover – i.e. vertical projection of canopy foliage onto a 

horizontal surface –, and as such is the most directly comparable with cover derived from 

remote sensing imagery such as LiDAR (Fiala et al., 2006).  The sampling procedure involved 

laying down transects along a fixed 25m measuring tape orientated from north to south and 

moving from west to east within the subplot at 2m increments (Figure 2).  Along these 

transects, the presence of canopy cover was determined using a 5m pole placed vertically 

above each sampled points every 2m along the transects.  At each sampled point the 

presence of cover was coded as Y.  For plot level canopy cover, in terms of percentage at the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 
 

25m X 25m scale, the CC presence and absence data were subjected to the formula below 

(Equation 3):   

(ƩY/169)X100        Equation 3 

Where Y represents the presence of cover data.  The value 169 represents the total number 

of sampling points in a 25m X 25m plot conducted at 2m sampling increments.  A total of 37 

(25m X 25m) plots of CC were recorded during the field campaign.     

Insert Figure 2 

 

3.3 LiDAR data processing, woody structural metrics and validation 

Two LiDAR datasets were utilised to derive the LiDAR tree structure metrics.  For the first 

dataset, ~1m Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were 

created by processing the raw LiDAR point clouds according to the steps outlined in Asner et 

al., (2012).  Canopy height models (CHM, pixel size of 1.12m) were computed by subtracting 

the DEM from the CSM.  For the second dataset, the raw point cloud data were further 

processed to pseudo waveforms, in which the LiDAR hits or returns falling within a cube 

placed above the ground were binned into volumetric pixels (voxels of 5m X 5m horizontal X 

1m vertical) and weighted relative to the total number of hits within the vertical column 

(the result – LiDAR slicer data) (Asner et al., 2009). 

 

Three woody structural metrics were derived from the processed LiDAR datasets. The 

derivation of the three metrics excluded all woody vegetation below a height threshold of 

0.5m as to exclude the grassy savannah component.  The Carnegie Airborne Observatory 

(CAO) LiDAR data were validated against field height measurements of approximately 800 

trees.  There was a strong relationship (R2 = 0.93, p-value < 0.001) but a fraction of woody 

plants below 1.5-1.7m were not detected by the LiDAR (Wessels et al., 2011).  This would 

introduce a source of error in the modelling process.  However, since our objective was to 

investigate the potential contribution of short microwaves (X-band and/or C-band) in 

detecting the shrubby layer we still preferred to use a 0.5m height threshold over a higher 

height threshold at 1.5m.  In addition, all metric products have been resampled and 
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computed at the 25m spatial resolution to correspond with the ground data measurements 

(plot size of 25m X 25m) collected in the field for metric validation.  These metrics are 

described in detail below: 

1) Woody Canopy Cover (CC) is defined as the area vertically projected on a horizontal 

plane by woody plant canopies (Jennings et al., 1999).  The metric was created by 

first applying a data mask to the LiDAR CHM image in order to create a spatial array 

of 0s (no woody canopy) and 1s (presence of a woody canopy).  A percentage woody 

cover distribution image (summing all the 1’s and dividing by 625 and then 

percentage) was calculated at a spatial resolution of 25m.  This metric was validated 

against the 37 25m X 25m CC ground truth plots (Figure 3).  Results yielded a strong, 

positive, unbiased relationship (R2=0.79) with a low Root Mean Squared Error 

(RMSE) (12.4%) and Standard Error of Prediction (SEP) (23%).   

 

Insert Figure 3 

 

2) Total Canopy Volume (TCV) is a metric which approximates the area under the curve 

of the pseudo waveform (i.e. a plot displaying the LiDAR return frequency-by-height; 

Muss et al., 2011) and indicates the volume occupied by vegetation matter within 

the vertical profile.  The metric was computed from the pseudo waveform LiDAR 

data (i.e. voxel) by the addition of the within-canopy LiDAR returns at different 

heights or slices (incrementally increasing by 1m) above 0.5m (Asner et al., 2009), 

and the value was converted to hectare.  The TCV LiDAR metric was not validated 

with ground collected data as a suitable field sampling approach was yet to be 

defined for this type of savannah environment.  However, in Mathieu et al., (2013), 

the TCV metric, in comparison to all the other metrics, was best correlated with 

RADARSAT-2 backscatter and was thus considered a suitable metric in this study.   

3) Above ground woody biomass (AGB) is defined as the mass of live organic matter 

present above the ground surface (Bombelli et al., 2009) and is expressed in this 

study as tonnes per hectare (t/ha).  The AGB LiDAR derived metric was modelled 

using a linear regression, ground estimated AGB (within 25m field plots) and a simple 

HGT X CC LiDAR metric (where HGT is the mean top-of-canopy height and CC is the 
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canopy cover of a 25m pixel resolution) (Colgan et al., 2012).  65% of the 152 ground 

estimated AGB was used for model development while the remaining 35% was used 

for model validation.  The validation results of ground versus LiDAR AGB (Figure 4) 

indicate a moderate positive correlation (R2=0.63).  With the use of allometric 

equations from Colgan et al., (2013) for ground AGB estimation, the RMSE (19.2 

t/ha) and SEP (63.8%) is, however, high with underestimation at high biomass levels 

by the LiDAR.  Due to the intensive and time consuming nature of sampling these 

very high biomass plots, an insufficient number of these plots may have been 

sampled to suitably train the model which thus led to such a deviation from the 1:1 

line at the high biomass levels in Figure 4.  In the absence of better biomass 

estimates, the LiDAR derived AGB metric was deemed sufficient for the modelling 

and validation. 

 

Insert Figure 4 

 

3.4 SAR data and processing 

The SAR intensity images (X-, C- and L-band) were pre-processed according to the following 

steps: multi-looking, radiometric calibration (conversion of raw digital numbers into sigma 

naught (σ0) backscatter values), geocoding, topographic normalization of the backscatter 

and filtering.  These steps were compiled in the form of scripts in GAMMATM radar 

processing software (Gamma Remote Sensing, Copyright © 2000-2011) for the Dual 

Polarised TerraSAR-X X-band (StripMap, Level 1b, Multi Look Ground Range Detected), Fine 

Quad Polarised RADARSAT-2 C-band (Single Look Complex) and Dual Polarised ALOS PALSAR 

L-band (Level 1.1) data.  A 20m Digital Elevation Model (DEM) and a 90m Shuttle Radar 

Topography Mission (STRM) DEM were both used for the geocoding and orthorectification 

of the X-, C- and L-band SAR imagery.  The 20m DEM was computed from South African 1:50 

000 scale topographic maps (20m digital contours, spot-heights, coastline and inland water 

area data – ComputaMaps; www.computamaps.com) with Root Mean Square (RMS) 

planimetric error of 15.24m and a total vertical RMS error of 6.8m.  The 90m (3 arc sec) 

STRM DEM was gap-filled using Aster Global Digital Elevation Map data and was derived 

http://www.computamaps.com/
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from 20m interval contour lines extracted from 1:50 000 topographical maps.  An 

automated hydrological correction was applied to correct inaccuracies along river lines and 

tributaries (Weepener et al., 2011).  The multi-looking factors and filtering were chosen to 

best minimize the effect of speckle while not deteriorating the spatial detail captured by the 

sensors. 4:4, 1:5 and 2:8 range and azimuth multi-looking factors were implemented for the 

X-, C- and L-band datasets respectively.  All datasets were resampled, using a bicubic-log 

spline interpolation function, to their final map geometry resolutions.  This was achieved by 

applying a DEM oversampling factor (DEM resolution / Final image resolution) to the multi-

looked SAR datasets which was set in the “gc_map” module under the GAMMA Differential 

Interferometry and Geocoding package.  The original pixel size, multi-looking factors used in 

the pre-processing, modified pixel size (after multi-looking) and the final pixel size (i.e. map 

geometry) of the different SAR datasets were summarised in Table 2.  Finally, a Lee filter (3 

pixel X 3 pixel filtering window) (Lee, 1980) was applied to the images.  It is important to 

note that the full extents varied for the different SAR datasets due to sensor coverage 

programming and specifications (Figure 1). 

 

Insert Table 1 

Insert Table 2 

3.5 Data integration, modelling protocols and mapping 

Before modelling could be conducted the different datasets had to be processed to a 

common spatial grid.  A sampling grid strategy was implemented as the relationship 

between dependent (LiDAR) and independent (SAR backscatter intensity) datasets were not 

evident on a pixel-by-pixel basis mainly due to issues of SAR speckle and pixel-level 

inaccuracy of co-registration between datasets.  This strategy also served as a means of 

extracting information from various remote sensing datasets of varying spatial resolutions 

(see Table 1 and Table 2) without the need for pixel level fusion procedures.  A regular 

spatial grid made up of 105m resolution cells at 50m distance spacing was created in QGIS 

2.2 (Quantum GIS, Copyright © 2004-2014) and applied over the datasets.  The choice of the 

cell size was informed by Mathieu et al., (2013), who tested various grid sizes ranging from 
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15m and 495m with RADARSAT-2 C-band data, and reported the 105m grid size as the 

resolution which provided the best trade-off between the finest spatial resolution/mapping 

scale and strongest correlation with the LiDAR woody structure parameters.  Similar results 

(50-125m grid size) were reported with ALOS PALSAR L-band data in the region (Urbazaev, 

2013).  The 50m distance spacing between the grid cells was chosen to avoid 

autocorrelation effects arising from the inherent distribution of the vegetation structural 

parameters across the landscape (Wessels et al., 2011).  Informal settlements, the main 

roads and water surfaces such as rivers and dams were masked and excluded from the 

analysis.  Mean values within each cell were extracted for the SAR (X-HH, X-HV, C-HH, C-HV, 

L-HH and L-HV) and LiDAR metric datasets (CC, TCV and AGB).  Due to the differences in 

spatial coverage of the multi-frequency SAR datasets in relation to the LiDAR coverage 

(Figure 1), a varying number of data records (21170 records for X-band, 17980 records for C-

band and 21467 records for L-band) were obtained during aggregation to the 105m grid.  

Various data mining, regression and machine learning algorithms (linear regression, support 

vector machines, REP decision trees, artificial neural network and random forest) were 

tested in Naidoo et al., (2014) and  Random Forest (Breiman, 2001) was found to be the 

most robust and efficient, in terms of running time and accuracies (Prasad et al., 2006; 

Ismail et al., 2010).  Unlike other traditional and fast learning decision trees (e.g. 

Classification And Regression Trees or CART), RF is insensitive to small changes in the 

training datasets and are not prone to overfitting (Ismail et al., 2010; Prasad et al., 2006).  

Additionally, RF is less complex and less computer intensive in comparison to the high levels 

of customisation required for Artificial Neural Networks (ANN) and the long ‘learning’ or 

training times for Support Vector Machines (SVM) (Anguita et al., 2010). RF requires two 

main user-defined inputs – the number of trees built in the ‘forest’ or ‘ntree’ and the 

number of possible splitting variables for each node or ‘mtry’ (Ismail et al., 2010 & Prasad et 

al., 2006).   

 

RF was applied, using R rattle data mining software (Togaware Pty Ltd., Copyright © 2006-

2014), to the data with 35% of the data being used for model training and the remaining 

65% being used for model validation.  For the modelling process, the SAR frequency 

datasets were selected as the input (independent) variables while the LiDAR derived metrics 
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were selected as the target (dependent) variables.  The random forest models were built 

using the default setting parameters (‘ntrees’ = 500 and ‘mtry’ = √# SAR predictors) and the 

trees were allowed to grow without pruning. Predicted versus observed scatterplots and 

validation scores were outputted to calculate the model accuracy statistics.  The coefficient 

of determination (R²), Root Mean Square Error (RMSE) and Standard Error of Prediction (SEP 

in % which also known as the Relative RMSE) were computed and the modelling algorithm 

accuracies were compared for the individual SAR scenarios.  Seven modelling SAR scenarios 

(X-band only, C-band only, L-band only, X+C-band, X+L-band, C+L-band and X+C+L-band) 

were chosen to investigate the relationships between the individual SAR frequencies alone 

and different multi-frequency SAR combinations correlated against the three LiDAR metrics.   

 

The best performing RF model, for each woody structural metric, was applied to the 

relevant SAR imagery, which were all clipped to a common coverage, resampled (pixel 

aggregate) to a common resolution of 12.5m to match the coarsest L-band and stacked, by 

using a mapping script.  This script was developed in the R statistical software (Version 

2.15.2, The R Foundation for Statistical Computing, Copyright © 2012) which utilised the 

combination of the ‘ModelMap’, ‘Random Forest’ and Geospatial Data Abstraction Library 

(GDAL) modules.  The map products were imported into ArcMap 10.1 (ESRI, Copyright© 

1995-2014) and displayed in discrete class intervals (total of 6 classes) to best illustrate the 

tree structural metric distribution representative of the entire modelled ranges. 

   

3.6 Error assessment 

The purpose of this section was to investigate the error produced by the different SAR 

models under varying tree structural scenarios, and to ascertain whether spatial patterns in 

error were associated with specific vegetation structural cohort types (e.g. grassland versus 

woodland conditions etc.).  Error statistics and maps were created by subtracting the LiDAR-

derived and SAR-derived woody (LiDAR – SAR) structural metric maps for TCV, AGB and CC.  

The SAR derived metric maps were resampled to 25m, via pixel aggregate, to match the 

LiDAR metric spatial resolution first before the subtraction.  The error statistics for all 
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metrics were documented but the TCV error maps were chosen for presentation over CC 

due to the metric’s three dimensional properties which would best capture the SAR 

backscatter interactions.  AGB error maps, however,  were not displayed due to the high 

error in the dense forest canopies (plots not displayed but supported by the error observed 

between the ground AGB and LiDAR derived AGB in Figure 4, before AGB up-scaling to the 

SAR).  For ease of interpretation of the error statistics and maps, the error values were 

grouped into 5 main groups using intervals which best covered the error range observed in 

the different metrics.  These groups were major overestimation, minor overestimation, 

negligible error, minor underestimation and major underestimation. 

 

Additionally, we assessed the following main vegetation structural cohort types typical of 

savannah landscapes: low cover and variable tree height (e.g. sparse veld), high cover and 

high tree height (e.g. forests) and high cover and low tree height (e.g. bush encroaching 

shrubs).  The combined use of CC and vegetation height metrics best described these 

structural cohorts than the use of AGB and/or TCV metrics.  Box and whisker plots were 

created from the mean LiDAR-SAR difference values (i.e. prediction error), which were 

extracted from the same sampling (105m) grid used in the predictor variable extraction 

process, and interpreted.  A total of 17559 difference pixel values were used to generate the 

boxplots with the outlier values being removed.  Similar error assessment analyses were 

conducted over different landscape geologies (e.g. granite versus gabbro) and topographic 

features (e.g. crest, slope and valleys) but the error distribution patterns were fairly similar 

without any distinct patterns to comment on. 

 

The complete methodology have been summarized and compiled in the form a 

methodological schema (Figure 5). 

Insert Figure 5      
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4. Results 

4.1 Modelling Accuracy Assessment 

 

Insert Table 3 

 

Insert Figure 6A-G 

 

 

Table 3 illustrates the validation performances of the different SAR predictors, under various 

multi-frequency SAR scenarios, in predicting the three woody structural LiDAR metrics (CC, 

TCV and AGB).  When examining the individual SAR frequency performances for modelling 

all three metrics, the longer wavelength L-band PALSAR predictors consistently yielded 

higher accuracies in comparison to the shorter wavelength predictors of both X-band 

TerraSAR-X and C-band Radarsat-2.  The X-band TerraSAR-X predictors by far consistently 

produced the lowest modelling accuracies.  The combination of the short wavelength SAR 

datasets (X- and C-band) improved the tree structural modelling over the individual dataset 

accuracies results but never produced accuracies greater than the use of the L-band dataset 

alone.  The combined use of all three SAR frequencies (X-, C- and L-band) data in the 

modelling process consistently yielded the highest accuracies for modelling all three 

structural metrics (refer to the highlighted results for each metric in Table 3).  In comparison 

to the results for L-band alone, there was a relative improvement of 10% or greater for all 

three structural metrics in modelling accuracies when the shorter wavelength datasets (X- 

and C-band) were added.  However, the inclusion of the L-band frequency contributed the 

most to the overall accuracies.  Overall, the three metrics were modelled at high accuracies 

under the multi-frequency scenario (X-, C- and L-band) and with similar patterns when 

considering the various individual scenarios. 

   

Figures 6A-G illustrates, by way of the 1:1 line, the extent of over-prediction and under-

prediction by the models which is gradually reduced towards the multi-frequency scenarios.  

The TCV results were chosen for representation in Figures 6A-G as the metric yielded the 

highest overall modelled accuracies and the remaining metrics (CC and AGB) displayed 

similar trends throughout the different SAR frequency combinations.  For TCV (Figures 6A-
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G), general over-prediction is observed at values less than ±100000 (no unit) TCV while 

general under-prediction is observed at values greater than this threshold.   

  

4.2 Tree Structure Metric and Error Maps  

 

Insert Figure 7i-iii 

 

All three metrics were mapped for the study area (Figure 7i-iii) using the multi-frequency 

SAR models (X+C+L-band).  Figures 7(i-iii) illustrate the spatial distributions of AGB (Figure 

7i), TCV (Figure 7ii) and CC (Figure 7iii) which overall were very similar with high and low 

AGB and TCV regions coinciding with high and low CC.  The spatial distribution of these 

metrics, coupled with the authors’ knowledge and observations, will be elaborated upon in 

detail in the discussion section.  Figure 8 shows the AGB vs. CC scatterplot for AOI ‘A’ (Figure 

7), a dense forested site. The point cloud generally displays a high correlation between the 

2D (CC) and 3D (AGB) variable, but also a triangular shape with an increasing base as the CC 

increases up to 75% (highlight by the white labels in figure 8).  Hence, dense cover 

conditions (CC>70%) are characterized by AGB values varying from moderate (35-40 t/ha) to 

high (>60 t/ha), corresponding to a range of tree sizes from coppicing thicket and medium 

sized tree bush encroachment to taller tree forests. 

Insert Figure 8 

 
Examples of TCV error maps for dense forested (black box near ‘A’ in Figure 7iii) and sparse 

gabbro (black box over ‘C’ in Figure 7iii) sites were presented in Figures 9 and 10, 

respectively.  Total CC, TCV and AGB error statistics were calculated to investigate the 

contributions of the four main SAR frequencies scenarios (X-band, C-band, L-band and 

X+C+L-band) to the modelling and mapping error (Table 4).  

Insert Table 4 
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Insert Figure 9i-v 

Insert Figure 10i-v 

 

In Table 4, there is a noticeable decline in major overestimation and major underestimation 

with an increase in negligible error for all three metrics from shorter wavelengths (X-band to 

C-band) to the longer wavelength (L-band).  For all metrics, the X+C+L-band combined 

scenario further reduced major overestimation and marginally increased negligible error but 

at the cost of an increase in major underestimation in comparison to the L-band results.  

The TCV metric, under L-band and X+C+L-band scenarios, illustrated the most noticeable 

reduction in major overestimation and underestimation, in comparison to the other metrics, 

but at the cost of a higher percentage of minor underestimation (~60% between 10 000 to 

50 000 TCV units).  The greatest percentage increase in negligible error (-5t/ha to 5t/ha) was 

noticed in AGB metric for the L-band and X+C+L-band combined scenarios.  More specifically 

for the TCV metric, under dense forested conditions (Figures 9i-v), the X-band scenario 

(Figure 9i) illustrate major TCV underestimation.  C-band results (Figure 9ii) indicate an 

overall decrease of patches of major TCV underestimation but some of these have been 

replaced with major TCV overestimation across less dense patches of large trees (see 

encircled area in Figure 9ii).  Further improvement is visible for the L-band scenario (Figure 

9iii) with a noticeable increase in the minor TCV underestimation (10 000 to 50 000 TCV 

units) and negligible TCV error (evident in Table 4).   Finally, the X+C+L scenario in Figure 9iv 

illustrated noticeable increases in the negligible TCV error coverage, especially over the 

dense green ridge visible in the LiDAR TCV of Figure 9v, but also indicated an increase in 

major TCV underestimation over dense vegetation patches north of the ridge (see encircle 

area in Figure 9iv).  Patches of major TCV overestimation, however, still persist across 

riparian zones of minor tributaries (rectangle area in Figure 9iv).  Under sparse vegetated 

conditions across gabbro intrusions (Figures 10-i-v), however, X-band and C-band scenarios 

(Figures 10i and 10ii) indicate vast extents of major TCV overestimation for the sparse 

vegetation areas and major TCV underestimation for the dense forested patches (see 

encircled area in Figure  10i).  The L-band scenario (Figure 10iii) illustrates a drastic 

improvement with an extensive increase in negligible TCV error across the Area of Interest 

(AOI).  Across patches of dense vegetation, major TCV underestimation still persists (similar 
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to the trend in Figure 9).  The X+C+L-band scenario (Figure 10iv) also yields favourable 

results similar to the L-band scenario with no visible improvement.  More quantitative 

results (box-plots, Figures 11i-ii) were introduced next to further assess the individual SAR 

frequency error contributions under different sparse and dense vegetation conditions. 

Insert Figure 11i-ii 

CC error boxplots of the four main SAR frequency scenarios, Figure 11, were chosen to 

investigate error across vegetation structural types, classified from the LiDAR CHM, and 

including sparse shrubs (CC <40% and height <3m) or trees (CC <40% and height >3m) 

(Figure 11i), and dense forested (CC >70% and height >3m) or bush encroached (CC >70% 

and height <3m) conditions (Figure 11ii).  In general, SAR derived CC is mostly overestimated 

across sparse vegetation but is underestimated across conditions of dense cover which 

coincides with the main trends of Figures 9i-v and 10i-v.  The L-band scenario yielded the 

lowest overall CC errors (in terms of mean error or variance, or both) across both low levels 

of CC (<40%) and low height (<3m), and dense CC (>70%) across all height (<3m to >5m) in 

comparison to the X-band (highest variability and mean CC error) and C-band.  Thus under 

sparse and low vegetation and bush encroaching conditions, it is the L-band which yields the 

lower levels of CC error and not the shorter wavelengths (X-band or C-band) as we may have 

expected.  Also, the inclusion of the shorter wavelength datasets (X-band and C-band) with 

the L-band dataset led to minor improvements in the overall variability and mean of CC 

error across most sparse vegetation structural conditions (except regarding vegetation 

conditions with CC <40% and height >5m which is inconclusive) and across tall dense 

vegetation conditions (CC >70% and height >5m).  Most significant improvement of the 

addition of the high frequency data occurred for the sparse and tallest trees (CC <40% and 

>3m) conditions. 

 

5. Discussion 

 
The modelling results indicated that it was the longer wavelength L-band dataset which 

contributed the most to the successful estimates of all three woody structural metrics.  This 

finding agrees with other studies in the literature across a variety of ecosystem types such 
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as coniferous forests (Dobson et al., 1992), boreal forests (Saatchi & Moghaddam, 2000) and 

temperate forests (Lucas et al., 2006).  The results obtained for the L-band can be attributed 

to its ability to penetrate deeper into the canopy, allowing the signal to interact the most 

with the larger tree constituents such as the trunk and branches (Mitchard et al., 2009), and 

thus produces stronger correlations with the LiDAR metrics.  Despite the leaf-off conditions 

of most trees in winter, the shorter wavelengths (X- and C-band), 5.6cm for RADARSAT-2 

and 3.1cm for TerraSAR-X, may have had a limited penetration of the canopy, and generally 

produced higher errors than the L-band for dense tree canopy (Figure 11ii).  In the case of 

open woodlands (CC<40, Figure 11i), results suggest that some penetration did occur 

through the larger gaps with some good performance of C- and X-band compared to L-band 

(see tree height >3 m). However, C-band may have also been more sensitive to variability of 

surface roughness features (e.g. dense to sparse grass cover, fire scars etc.) which were too 

small to affect the coarser L-band (Wang et al., 2013; Bourgeau-Chavez et al., 2002; Menges 

et al., 2004).  This interaction of the smaller wavelengths with these surface features may 

have introduced noise, which could have weakened correlations between the SAR signal and 

the LiDAR metrics.      

 

The integration of the shorter wavelengths (e.g. X-band, C-band and X+C band), with L-band, 

yielded relatively small improvements in comparison to the L-band result alone (a reduction 

in SEP by ~3% and less for some metrics).  The combination of all three frequencies yielded 

the highest overall accuracies for all metrics than each SAR frequency dataset alone.  This 

result implies that the combination of short wavelength and long wavelength SAR datasets 

(X+C+L-band) does provide improved estimation in the modelling of the complete 

vegetation structure in terms of CC, TCV and AGB. As an aside to the modelling results, CC 

and AGB field data were initially investigated as a LiDAR-substitute for SAR model calibration 

and validation but preliminary results showed poorer modelling accuracies (R²<0.60) in 

comparison to the LiDAR derived results. This demonstrated the importance of extensive 

LiDAR coverage as the preferred source for modelling.     

 

The three metric total percentage error statistics (Table 4), the TCV error AOI maps (Figures 

9-10i-v) and the CC error box plots (Figures 11i-ii) reaffirmed the modelling accuracy 
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observations but provided greater insight into the specific SAR frequency contributions to 

the overall prediction error under a variety of woody structural conditions.  The use of L-

band alone and its integration with the shorter wavelengths reduced the overall metric 

overestimation error (mean error and variability) under sparse vegetation conditions while 

reducing overall metric underestimation under dense vegetated conditions, in comparison 

to the shorter wavelengths alone and their combinations.  These observations thus go 

against the first part of the main hypothesis made in this study which hypothesised the 

importance of shorter wavelengths for interaction with the finer woody structural elements 

and shrubby vegetation cohorts as L-band appears to be more effective in this regard.  The 

incorporation of the shorter wavelengths with the L-band improved the overall metric error 

budget by reducing the overall mean error and the overall variability of the error under 

most vegetation structural conditions.  Additionally, L-band and X+C+L-band were more 

suited for assessing the 3D metrics (TCV and AGB) than the single 2D metric (CC) with the 

highest percentage of negligible AGB error and lowest percentages of major TCV under- and 

overestimation being observed.  These results can be supported by the fact that the L-band 

was expected to penetrate deeper and interact more with the lower levels of vegetation 

structure than the X- and C-band but the shorter wavelengths may have provided minor 

assistance to the L-band by interacting with the smaller canopy elements (Rosenqvist et al., 

2003).  Further investigation will be needed to ascertain the exact cause of these trends but 

the overall results, however, advocate the suitability of the L-band over C- and X-band for 

analysing dense forested environments (>70% CC with an expected error ranging from ~7% 

to ~18%) and thus confirms the second part of the main hypothesis which stated that the L-

band SAR signal interacts with the major tree structural components (e.g. trunk and main 

branches typical of forested areas) (Lucas et al., 2006; Carreiras et al., 2013; Mitchard et al., 

2012).  In the absence of L-band data, C-band has proven to be effective in sparser cover, 

i.e. less than 40% CC, savannah environments which coincided with the recommendations 

made by Mathieu et al., 2013.   

 

Among the three structural metrics, TCV was consistently modelled with higher accuracies, 

amongst all seven SAR scenarios (Table 3).  This result concurs with that of Mathieu et al., 

(2013).  TCV is a metric which indicates the volume of vegetation present within the vertical 
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structure and its higher modelled accuracies could be attributed to the leaf-off conditions 

typical of the dry winter season which allowed for greater wave penetration into the canopy 

for all wavelengths, even the shorter wavelengths.  CC and AGB metrics yielded similar R2 

values with higher SEP values observed for AGB which may be due to the associated error 

propagated through the allometric equation and the LiDAR model (results of Figure 4).  

Since SAR is a system which utilises penetrating radio waves, the SAR signals will be 

expected to be more related to 3D structural metrics such as TCV and AGB rather than to 

the 2D CC metric (which achieved marginally poorer modelled results).  This is due to the 

fact that CC is a metric for which the 2D horizontal coverage fluctuates seasonally 

depending on the phenological state of the vegetation, at least in comparison to TCV and 

AGB, which relies on the 3D nature of the woody structure which includes height and is thus 

more consistent across seasons (in the absence of disturbance). 

 

The multi-frequency (X+C+L-band) model maps created for AGB (Figure 7i), TCV (Figure 7ii) 

and CC (Figure 7iii) illustrate patterns and distributions resulting from influence of numerous 

biotic (mega-herbivore herbivory and anthropogenic pressures such as fuelwood extraction 

and cattle ranching) and abiotic factors (fire regimes, geology and topographic features) 

relevant to the study area.  In order to discuss the common patterns in CC, TCV and AGB in 

these maps, it will be collectively referred to as “woody vegetation”. Dense woody 

vegetation patterns are observed in the protected forested woodlands (Bushbuckridge 

Nature Reserve) and in the exotic pine plantations within the vicinity of A.  Generally, the 

riparian zones of major rivers and tributaries (e.g. B, the Sabie River catchment) have high 

values of CC, TCV and AGB compared to lower levels on the hill crests.  In contrast to the 

vegetation occurring on granitic soils, the intrusions of the Timbavati gabbro geology group 

(Figure 7 C) have very low woody CC, TCV and AGB.  These geological substrates naturally 

support more open landscapes than the more densely vegetated granite soils.  Rangeland 

areas in and within the vicinity of informal settlements, such as Justicea (F), also showed 

lower levels of CC, TCV and AGB which could be linked to the heavy reliance of the local 

populace on fuelwood collection for energy requirements (Shackleton et al., 1994; Wessels 

et al., 2011; Wessels et al., 2013).  The area of interest E (Athole area which consisted of 

historical rotational grazing camps which are currently inactive – Barend Erasmus, personal 
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communication, 27/02/2013) possesses a sharp fence line contrast in tree structure 

between the dense woody vegetation evident in the northern extents of Athole (i.e. north 

of fence) and the sparse woody vegetation in Sabi Sands Private Game Reserve (i.e. south of 

fence).  The extended absence of grazing and browsing pressures in the old pasture and 

paddock enclosures in the northern reaches of the Athole fence line boundary (Figure 7 E) 

caused dense woody vegetation which contrasted sharply with the sparser woody 

vegetation in the more open and highly accessed areas south of the fence boundary.  

Additionally, the dense woody vegetation associated with the Acacia welwitschii thicket 

which dominates the ecca shales geological group of Southern Kruger National Park (outside 

map extents) was clearly visible at D (Mathieu et al., 2013).  In conclusion, the accuracy and 

credibility of these maps and their trends have been supported by the various observations 

made during field visits and by the authors’ general knowledge of the study area.  The 

general range of these tree structural metric values also agreed with the ranges reported in 

other related studies conducted in this savannah region (Mathieu et al., 2013; Colgan et al., 

2012). 

 

Although overall modelling and mapping results yielded favourable accuracies, it is, 

however, important to acknowledge the different sources of error which were introduced in 

this study. The first error source was the temporal difference between the acquisition of the 

SAR predictor datasets and the reference datasets such as collected field data and/or LiDAR 

datasets. This was unavoidable due to sensor failure (e.g. ALOS PALSAR in early 2011) and 

logistical restrictions to the current research project (e.g. specific RADARSAT-2 datasets 

available from collaborations). Although there has been documented evidence of big tree 

loss in the study region (Asner and Levick, 2012), no major error was observed in the 

modelling results, especially when the 2010 L-band model was trained and validated using 

2012 LiDAR data which produced expected results for this environment (Colgan et al., 2012; 

Mathieu et al., 2013).  This loss in trees which occurred during the different SAR dataset 

acquisitions times (between 2009 and 2012) may have also introduced a certain margin of 

error in the modelling results.  It was expected, however, that the main structure of the 

remaining vegetation would not have changed prominently enough to extensively vary 

backscatter target interactions between the different acquisition times.  A final source of 
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error was introduced by the fact that the LiDAR reference dataset, which was set to target 

woody canopies with complete foliage, was acquired during the wet-dry transition season 

where the senescence process had just started.  This may have resulted in a distorted 

representation of the woody structural metrics expected on the ground.  Understanding 

these sources of error will help improve future studies by promoting the creation of more 

accurate models.    

 

 

6. Concluding Remarks 

 

This study investigated the accuracy of modelling and mapping above ground biomass 

(AGB), woody canopy cover (CC) and total canopy volume (TCV) in heterogeneous South 

African savannahs using multi-frequency SAR datasets (X-band, C-band and L-band including 

their combinations).  Various studies have implemented L-band SAR data for tree structural 

assessment in a savannah type environment (Carreiras et al., 2013; Mitchard et al., 2012) 

but the use of shorter wavelengths, such as C-band, have also been proven to perform 

relatively well (Mathieu et al., 2013).  This study also served to compare the three SAR 

frequency datasets (X-, C- and L-band) in the same study region of Mathieu et al. (2013) and 

is the first attempt in an African Savannah context.  It was hypothesized that the shorter SAR 

wavelengths (e.g. X-band, C-band), since interacting with the finer woody plant elements 

(e.g. branchlets) would be useful for mapping the shrubby/thicket layer while the longer 

SAR wavelengths (e.g. L-band) would interact with larger vegetation elements such as major 

branches and trunks typical of forested areas (Vollrath, 2010; Mitchard et al, 2009).  It was 

thus proposed that the combination of these different SAR frequencies would provide a 

better assessment of the savannah woody element than the individual SAR frequencies 

(Schmullius & Evans, 1997). 

 

After reviewing all the modelling and error assessment results, it can be concluded the L-

band SAR frequency was more effective in the modelling of the CC, TCV and AGB metrics in 

Southern African savannahs than the shorter wavelengths (X- and C-band) both as individual 
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and combined (X+C-band) datasets.  Although the integration of all three frequencies 

(X+C+L-band) yielded the best overall results for all three metrics, the improvements were 

noticeable but marginal in comparison to the L-band alone.  The results do not warrant the 

acquisition of all three SAR frequency datasets for tree structure monitoring. Further the 

addition of the shortest wavelengths did not assist in the overall reduction of prediction 

error specifically of the shrubby layer as hypothesized. With the recent launch of the ALOS 

PALSAR-2 L-band sensor, the use of such L-band based models will be critical for future 

accurate tree structure modelling and monitoring at the regional and provincial scale.  The 

modelling results obtained from the C-band SAR frequency alone, however, does yield 

promising results which would make the implementation of similar models to the free data 

obtained from the recently launched Sentinel-1 C-band sensor (launched in April 2014) 

viable when L-band datasets are not available.  Sentinel-1 data are as far as we know the 

only upcoming operational, free and open access SAR dataset available in the near future, 

especially in Southern Africa.  Building up of seasonal / annual time series may also improve 

on the performance of single date C-band imagery.  The inclusion of seasonal optical 

datasets (e.g. reflectance bands, vegetation indices and textures derived from LandSAT 

platforms), which can provide more woody structural information, may also augment the 

modelling results. 

 

As a way forward beyond this study, in order to reduce the error experienced in the AGB 

results (at field collection, LiDAR and SAR levels), new and more robust savannah tree 

allometric equations, with a greater range of representative tree stem and height sizes, will 

need to be produced but such efforts will require extensive ground level harvesting 

campaigns.  Due to the success of this study, particularly the positive results using L-band 

SAR data, future work will seek to up-scale these results to greater regional and provincial 

areas using more extensive LiDAR calibration and validation datasets. 
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Appendix A 

M = 0.109D(1.39+0.14ln(D)) HGT0.73 ƿ0.80        Equation 1 

Where M = biomass in kilograms per hectare, D = Diameter above breast height (DBH) in 

centimetres, HGT = height of tree in metres and ƿ = mean wood specific gravity (fixed at a 

mean value of 0.9) which is unitless. 

 

Appendix B 

Total 25m X 25m AGB plot = Q + S + (T*6.25)      Equation 2 

Where ‘Q’ is the total AGB of stems ≥ 10cm DBH, ‘S’ is total AGB of stems between 5 and 

10cm DBH and ‘T’ is the total AGB of stems between 3 and 5cm DBH.  The up-scaling factor 

of 6.25 was used as stems between 3 and 5cm were only sampled within the 10 by 10m (i.e. 

DBH zone 1) subplot and not sampled for the rest of the 25m X 25m grid (i.e. DBH zone 2). 

So 625m2 (i.e. total area of the 25m X 25m sample plot) divided by 100m2 (area of the 10 X 

10m subplot) is 6.25.  All remaining stems within the 25m X 25m sample plot, which 

subscribed to the remaining DBH conditions (i.e. ≥5cm DBH), were measured and therefore 

did not require any up-scaling factors.  



Figure 1: The Southern Kruger National Park region and the spatial coverage of all implemented remote 
sensing datasets.  The solid red line indicates the coverage of the 2009 RADARSAT-2 scenes while the solid 
gold line indicates the two scenes of the 2010 ALOS dual-pol PALSAR imagery. The dashed grey line indicates 
the five scenes of the 2012 TerraSAR-X StripMap imagery. The shaded black areas represent the coverage of 
the 2012 CAO LiDAR sensor tree cover product. The red squares indicate the 38 sample sites where field 
data collections took place. 
 

Figure 2: Ground sampling design including ground tree biomass and tree cover collection protocols (50m 
spacing between sample plots coincide with the auto-correlation distance – refer to data integration 
section) 

 

Figure 3: Validation results of field-measured woody Canopy Cover (CC) versus LiDAR derived CC (above 
0.5m height, Number of observations =37) 

 

Figure 4: Validation results of field-measured Above Ground Biomass (AGB) versus LiDAR derived AGB 
(above 0.5m height, Number of observations =53) 

 

Figure 5: Methodology schema describing the data integration and modelling process 

 

Figure 6A-G: Observed versus Predicted Total woody Canopy Volume (TCV) scatter density plots (dotted line 

is 1:1) 

 

Figure 7i-iii: X+C+L SAR derived tree structural metric maps, for i) Above Ground Biomass (AGB), ii) Total 

woody Canopy Volume (TCV) and iii) woody Canopy Cover (CC), using random forest. Letters A-F represents 

key areas of interest for discussion (for all three metrics). The black boxes represent the rough extents of the 

LiDAR-SAR CC scenario difference maps for Area of Interests ‘A’ and ‘C’. 

 

Figure 8: Scatterplot of Above Ground Biomass (AGB), y-axis, versus woody Canopy Cover (CC), x-axis, under 

dense cover conditions (plotted from pixels extracted from the Area of Interest ‘A’) 

 

Figure 9i-v: LiDAR - SAR scenario difference (error) maps of Total woody Canopy Volume (TCV) for the 

Xanthia Forest Area of Interest (close to ‘A’); v) 25m LiDAR-derived TCV map 

 

Figure 10i-v: LiDAR - SAR scenario difference (error) maps of Total woody Canopy Volume (TCV) for the 

Gabbro Intrusions Area of Interest ‘C’; v) 25m LiDAR-derived TCV map 

 

Figures 11i-ii): Woody Canopy Cover (CC) Error box plots of: i) low LiDAR CC (<40%) and variable LiDAR 

vegetation height and ii) dense LiDAR CC (>70%) and variable LiDAR vegetation height (+’ve values = CC 

Figure captions
Click here to download Figure: Figure_captions.docx

http://ees.elsevier.com/photo/download.aspx?id=168280&guid=0b977ebc-2f4f-4e96-8cd3-6e85fc533a34&scheme=1


underestimation; -‘ve values = CC overestimation; dashed line partitions the four main SAR scenarios across 

the x-axis classes, centre point = mean value, box = standard error and whiskers = standard deviation) 

(Number of pixels = 17559) 
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           DBH* Zone 1: 10m X 10m [Trees with DBH >= 3cm measured] 
 
           DBH Zone 2: 25m X 25m [Trees with DBH >= 5cm measured] 
 
           Line Transect and Vertical Densiometer methods (1m and/or 2m intervals) 
 
* Note: DBH refers to Diameter above Breast Height (DBH) 
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i) X-Band TCV Error ii) C-Band TCV Error 

iii) L-Band TCV Error iv) X+C+L-Band TCV Error 
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Table 1: SAR and LiDAR datasets acquired and utilised for the modelling of woody structural metrics  

Imagery Sensor Mode 
Incidence 

angle 
Acquisition 

time Season 

1 

TerraSAR-X 
X-band ß 

StripMap Dual 
Polarized (HH & 

HV) 

38.1-39.3° 08/09/2012 

Late Winter 
2012 

2 21.3-22.8° 23/08/2012 

3 37.2-38.4° 28/08/2012 

4 36.2-37.4° 19/09/2012 

5 39.1-40.2° 30/09/2012 

1 

RADARSAT-2 
C-band ¥ 

Quad Polarized 
(HH, HV, VH, 

VV) but only HH 
and HV used 

34.4 - 36.0° 13/08/2009 

Winter 2009 
2 39.3 - 40.1° 06/08/2009 

3 32.4 - 34.0° 06/09/2009 

4 37.4 - 38.9° 30/08/2009 

1 ALOS PALSAR 
L-band σ 

Dual Polarized 
(HH & HV) 

34.3° 
14/08/2010 

Winter 2010 
2 31/08/2010 

AGB (kg) Product 
CAO LiDAR Ф 

 

Discrete 
Footprint 

 

Nadir 
 

1/04/2012-
24/05/2012 

End summer 
2012 

CC (%) Product 
TCV Product 

ß: http://www.geoimage.com.au/satellite/TerraSar ; ¥: http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-

tableau.asp ; σ: http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm ; Ф: Asner et al., (2012) 
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Table 2: Original, modified and final SAR pixel size changes during multi-looking and pre-processing steps 

 

SAR Dataset 
Original Pixel 

Size [m] (Range 
X Azimuth) 

Multi-Looking 
factors (no. Looks 

for Range X 
Azimuth) 

Modified Pixel 
Size [m] (after 
multi-looking) 

Final Pixel Size 
[m] (map 

geometry)Ф 

ALOS PALSAR FBD 9.37 X 3.23 2 X 8  18.74 X 25.84 12.5 X 12.5 

RADARSAT-2 SLC 4.70 X 5.10 1 X 1  4.70 X 5.10  5 X 5 

TerraSAR-X StripMap MGD 2.75 X 2.75 4 X 4  11 X 11 12.5 X 12.5 

Ф Resolutions used in the modelling stage but all were resampled to 12.5m for mapping 
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Table 3: Woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) 

parameter modelling accuracy assessment (validation) results obtained from the Random Forest algorithm 

according to seven SAR frequency scenarios 

 

  CC (%) TCV (unitless per hectare) AGB (tonnes per hectare) 

SAR Frequency R² RMSE (SEP %) R² RMSE (SEP %) R² RMSE (SEP %) 

X-band only 0.34 18.12 (50.87) 0.35 35534.50 (33.79) 0.32 10.88 (59.82) 

C-band only 0.61 13.20 (38.50) 0.66 24731.06 (24.07) 0.60 7.81 (43.66) 

L-band only 0.77 10.59 (29.64) 0.79 19902.79 (18.88) 0.78 6.05 (32.90) 

X+C-band 0.69 11.71 (33.94) 0.72 22243.64 (21.59) 0.67 7.19 (40.33) 

X+L-band 0.80 9.90 (27.78) 0.82 18609.04 (17.70) 0.81 5.70 (31.35) 

C+L-band 0.81 9.23 (26.94) 0.83 17236.50 (16.77) 0.81 5.45 (30.44) 

X+C+L-band 0.83 8.76 (25.40) 0.85 16443.57 (15.96) 0.83 5.20 (29.18) 

Datasets split into 35% Training and 65% Validation for modelling 
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Table 4: Total woody Canopy Cover (CC), Total Canopy Volume (TCV) and Above Ground Biomass (AGB) % 
error across the entire LiDAR-SAR coverage for the four main SAR frequency scenarios (Number of 
observations = 17559) 

 

CC Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15%) 21.02 13.87 12.78 9.43 

Minor overestimation (-15% to -5%) 17.30 16.38 16.74 16.85 

Negligible error (-5% to 5%) 19.52 24.58 31.34 31.84 

Minor underestimation (5% to 15%) 13.87 16.95 19.27 20.08 

Major underestimation (>15%) 28.29 28.21 19.87 21.80 

TCV Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-50k) 7.54 1.69 0.40 0.35 

Minor overestimation (-50k to -10k) 28.58 22.96 22.32 18.57 

Negligible error (-10k to 10k) 4.64 8.26 15.56 16.62 

Minor underestimation (10k to 50k) 32.41 58.43 57.12 60.31 

Major underestimation (>50k) 26.82 8.66 4.60 4.14 

AGB Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15t/ha) 4.53 1.95 0.79 0.65 

Minor overestimation (-15t/ha to -5t/ha) 27.46 18.85 15.47 13.16 

Negligible error (-5t/ha to 5t/ha) 13.29 22.05 36.42 36.05 

Minor underestimation (5t/ha to 15t/ha) 25.07 41.00 37.24 39.70 

Major underestimation (>15t/ha) 29.65 16.15 10.08 10.43 
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