SACI GREEN CHEMISTRY CONFERENCE, DURBAN 17-21 August 2014

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Modulated Synthesis of Cr-MOF (MIL 101) for Hydrogen Storage Applications

Tshiamo Segakweng

Introduction

Hydrogen South Africa (HySA) □ Tshiamo Segakweng

www.hysainfrastructure.org

□ Supervisor: Dr Jianwei Ren

Dr Henrietta Langmi

Council for Scientific and Industrial Research (CSIR)

www.csir.co.za

Objectives

- Prepare Cr-MOF with safe synthetic method
- Maximise the H₂ adsorption of the synthesised Cr-MOFs
- Maximise safety in the synthesises procedure to enable large scale production

H-WEST UNIVERSITY ESITI YA BOKONE-BOPHIRIMA DWES-UNIVERSITEIT CHEFSTROOM CAMPUS

Unique Facts about Cr-MOF

- Large pores that can be used for gas storage
- Open metal sites
- Relative large surface area
- Hydrogen storage potential
- H₂O as solvent
- Draw back is the use of HF as a modulator

Chromium-based MOF (MIL-101) (MIL= Matériaux de l'Institut Lavoisier)

Two types of mesoporous cages: 29Å and 34Å

MIL-101 Structure

- Hydrothermal synthesis in an autoclave
- Chromium salt (usually Cr(NO₃)₃•9H₂O), H₂BDC and H₂O
- 200–220 °C
- 8–20 h
- Formula: Cr₃F(H₂O)₂O[(O₂C)-C₆H₄-(CO₂)]₃.nH₂O (where n is ~25)

Hydro Fluoric acid

- HF acid is very reactive
- Special storage and apparatus
- Very toxic and harmful to the environment
- Safe use of HF in large scale results in more expenses and increased danger for all involved as well as the environment

Fluorine Substitution

Property	Fluorine	Sulphur	Chlorine
Atomic no.	9	16	17
Std. Atomic weight	18.99	32.06	35.45
Atom group	Halogen	Chalcogen	Halogen
Electron config.	[He] 2s2 <mark>2p5</mark>	[Ne] 3s2 3p	[Ne] 3s2 <mark>3p5</mark>
Electronegativity	3.98	2.58	3.16
Oxidation state	-1 (Fluoride ion)	+6 (in H2SO4)	-1 (chloride ion)
Van de Waals Radii	135 pm	180pm	175 pm

- Chlorine is hence the best option
- Can be added via HCl or Salts (CrCl₃•6H₂O)

Formic acid Modulation

- Initial experiments gave small sized crystals
- To improve hydrogen storage, we had to obtain bigger sized crystals
- An acid with a similar functional group to that of H₂BDC was needed to slow down the reaction to allow for bigger crystal growth

PXRD patterns of the obtained MIL-101

1111

HyS/

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Effect of different ratios of formic acid/CrCl₃

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

(a)N₂ and (b) H₂ sorption isotherms at 77 K and 1 bar

Physical properties and H₂ uptake capacities of the desolvated MIL-101(Cr)

Sample	Density (g/cm ³) ^c	S _{BET} (m²⋅g⁻¹) ^d	Pore vol. (cm³·g⁻¹) ^e	Micropore vol. (cm ³ ·g ⁻¹) ^f	uptake
					(wt.%) ^g
MIL-101(0 eq)	1.55	1133.7	0.51	0.43	0.99
MIL-101(50 eq)	1.58	1715.7	0.91	0.78	1.65
MIL-101(100 eq)	1.60	2618.5	1.36	1.22	1.92

^a Estimated from SEM images. ^b Calculated relative crystallinity. ^c Determined by pycnometer. ^d BET surface area. ^e From H-K analysis. ^f From H-K analysis. ^g Absorbed at 77K and 1 bar.

ш

Thermo gravimetric analysis

NORTH-WEST UNIVERSITY ** YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

PXRD patterns of CrMOF samples obtained in 100 eq synthesis.

Time dependant reaction

Phase-transition from MIL-101 to MIL-53 observed at the longer synthesis time

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIM NOORDMES-UNIVERSITEIT POTCHEFSTROOM CAMPUS

Stability in H2O and DMF

(a) XRD patterns, and (b) N_2 adsorption isotherms of MIL-101 after exposure to 80 °C water and DMF for 5 days.

Confirmed synthesis

- Reagents: CrCl₃ 6H₂O, H₂BDC, Formic Acid, H₂O
- Reaction time: 8hrs in high pressure autoclave
- Formic acid:CrCl₃•6H₂O equivalents: 100eq

Conclusions

- Successful synthesis of Cr-MOF with no HF
- Water stability confirmed
- Economical and safe industrial production possible
- GREEN INDUSTRIAL SYNTHESIS POSSIBLE

Acknowledgments

Financial support from South African Department of Science and Technology (DST) science

& technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

HySA Infrastructure (CSIR, NWU, DST)

tsegakweng@csir.co.za

