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Manifold adaptation for constant false alarm rate

ship detection in South African oceans
C. P. Schwegmann, W. Kleynhans and B. P. Salmon

Abstract

The detection of ships at sea is a difficult task made more so by uncooperative ships, especially when using transponder based

ship detection systems. Synthetic Aperture Radar imagery provides a means of observation independent of the ships cooperation

and over the years a vast amount of research has gone into the detection of ships using this imagery. One of the most common

methods used for ship detection in Synthetic Aperture Radar imagery is the Cell-Averaging Constant False Alarm Rate prescreening

method. It uses a scalar threshold value to determine how bright a pixel needs to be in order to be classified as a ship and thus

inversely how many false alarms are permitted. This paper presents by a method of converting the scalar threshold into a threshold

manifold. The manifold is adjusted using a Simulated Annealing algorithm to optimally fit to information provided by the ship

distribution map which is generated from transponder data. By carefully selecting the input solution and threshold boundaries,

much of the computational inefficiencies usually associated with Simulated Annealing can be avoided. The proposed method was

tested on six ASAR images against five other methods and had a reported detection accuracy of 85.2% with a corresponding

false alarm rate of 1.01× 10−7 .

Index Terms

Constant False Alarm Rate (CFAR), Marine technology, Simulated annealing, Synthetic aperture radar (SAR)

I. INTRODUCTION

MARITIME surveillance is an integral part of Maritime Domain Awareness (MDA). The surveillance of ships at sea

is important for a variety of concerns including those related to the environment, commerce and security [1], [2].

With over 100 000 ships active at any given point in time in the ocean [1], the detection of ships using any means possible is

important. Traditionally, ship monitoring relies on using a transponder system [3]–[6]. These transponder systems range from

terrestrial based systems such as Automatic Identification System (AIS) to space-based transceiver systems such as Satellite-

AIS (Sat-AIS) and Long Range Identification and Tracking (LRIT) [4]–[6]. Ship detection using transponders becomes difficult

when either the transponders are sabotaged or out of range (for terrestrial transponder systems). Despite this, the immense

amount of data provided by transponders can still be useful for the creation of a ship distribution map to profile ship movement

behavior [4].
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Maritime surveillance can be accomplished by analysing Synthetic Aperture Radar (SAR) imagery which is independent from

the required cooperation of the ships using transponders. SAR imagery can have large swath widths, day or night observation

of an area under most weather conditions and the distinct features of ships over the ocean made it an attractive option for ship

detection [3]–[8].

Ship (or target) detection in SAR imagery takes the form of a multistage approach whereby each stage provides ever

stricter requirements on the ships that are accepted [5]–[11]. Central to these detection systems is the stage known as the ship

prescreening which uses global or local means of highlighting ships. One of the most prevalent prescreening stages is known

as the Cell Averaging Constant False Alarm Rate (CA- CFAR) approach [4], [7], [8]. It is based on a scalar threshold value

which determines how much brighter a pixel must be to its local surroundings to be selected as a target or ship. Among the

benefits of the CA-CFAR prescreening stage is its low complexity and the ability to compute good initial estimates of the

target without computing the probability density function (PDF) for each sub-window. The disadvantage of using a single scalar

threshold to define the distribution of reflectance of the ocean is when the distribution of the sea clutter is heterogeneous [11].

An empirical PDF can then be computed for each sub-window to estimate if a pixel matches the target criteria or not [7], [11].

In this paper the assumption that a singular scalar threshold value is sufficient is discarded by creating a constrained threshold

manifold whereby each pixel is assigned its own specific threshold. This threshold manifold or constrained surface [12]–[14],

in addition to the local statistics within each window, provides a ship detection method which extends the CA-CFAR method

to be more flexible whilst still avoiding the local PDF computation that other methods require [10], [11].

The task is then to compute appropriate thresholds for each pixel. For areas with higher average backscatter (those close to

the nadir position) lower thresholds may be necessary whilst those further away from the nadir might require higher threshold

values. To aid in the selection of threshold values across the manifold, a novel usage of Simulated Annealing (SA) [15], in

combination with a ship distribution map, is presented here. Despite the efficiency of methods such as Genetic Algorithms

(GA) or Particle Swarm Optimization (PSO), the SA produces a solution which is more intuitive to the problem of computing

the threshold manifold [16]–[18]. The reason is that the CA-CFAR produces accurate initial conditions for the SA to adapt

quickly to an acceptable solution, which mitigates the computational inefficiency.

The organization of the paper is as follows: section II describes the two source of data used. Section III and IV describe the

system process and components used to detect ships and section V presents the results and a discussion thereof. Section VI

concludes the paper with closing arguments related to the method described herein.

II. DATA DESCRIPTION

A. Synthetic Aperture Radar Imagery

Six SAR images around the coast of South Africa were used in this study. The SAR images were acquired from ENVISAT’s

ASAR sensor between February 2012 and April 2012 in VV-polarized Wide Scan Mode (WSM). Despite the fact that a

HH-polarized set of images would have been preferred [19], the current set of images were the only ones available for this

study. Each of the SAR images has a corresponding expertly visually verified ground truth image indicating the position of

the large ships in the image. The images had a spatial resolution of 75 m × 75 m with a swath width of approximately 400 km
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which restricted the minimum size of the ships. This study provides results only for ships visible at this resolution which could

include large fishing trawlers, fish factories, cargo or fuel oil ships.

B. Transponder data

The method proposed in this paper only requires latitude and longitude points of the ships, which can be extracted data

from AIS, SAT-AIS or LRIT data. LRIT data was used in this study. LRIT transponders are required to transmit their position

every six hours but can be set up to send 1440 positional messages per day per ship, making the acquisition of hundreds

of thousands of points over a year possible. The data used in this study includes approximately 450 000 ship Latitudes and

Longitudes coordinates, recorded over the time period of 2011/03 to 2012/03 off the coast of South Africa. The data was

acquired just before the acquisition of the SAR images and it was assumed that the ship distribution map would not deviate

significantly from the movement behavior of the ships within the ASAR imagery.

III. SAR SHIP DETECTION

As mentioned previously, ship or target detection requires a multistage approach. It was assumed that no differentiation

between ships and other targets are made and that the system can be extended to include additional processing steps using the

ship distribution map in order to separate ships and other targets from the detections if required to do so.

The first stage of most ship detection systems is preprocessing. For this study, two forms of image segmentation were

performed. The first involves removing land from the image by separating land and sea pixels. This is done in order to prevent

incorrect detections over land as well as to reduce land azimuthal ambiguities near the coast. The second form of segmentation

involved grouping nearby pixels into groups so that ships of various sizes could be compared equally. Additional preprocessing

steps involving filtering were not applied in order to reduce the possibility of altering the sea clutter statistics as well as to

prevent the removal of small ships within the ASAR imagery.

The preprocessing step is followed by the prescreening and ship discrimination stages. The prescreening stage is dedicated to

improving the detection accuracy whilst the ship discrimination stage attempts to further reduce the false alarms. The method

presented in this paper extends the prescreening stage to perform further false alarm removal in lieu of a ship discrimination

stage. The ship detection method presented here uses an initial prescreening stage followed by a second prescreening stage

with an adaptive threshold manifold to remove false alarms. The detection system proposed in this paper is shown in Fig. 1.

The next section gives a more detailed introduction into CFAR and the classical CFAR method known as CA-CFAR.

A. CA-CFAR Prescreening

CA-CFAR prescreening involves selecting a threshold so that the number of false alarms detected is kept constant. One of

the first and most widely used versions of the CFAR method is known as the Power Ratio (PR) or Cell-Averaging CFAR

(CA-CFAR) [4], [7], [8], [10], [11], [20]. The method uses a set of sliding spatial windows to evaluate each pixel region in the

SAR image. The windows estimate the various properties of the current region as shown in Fig. 2. The clutter ring estimates

the mean surrounding ocean pixel backscatter value and the region of interest is used to estimate the current pixel or group
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of pixels’ mean value. If a region of interest (ROI) is T times brighter than the surrounding pixels then it is assumed to be a

bright ROI (i.e. a ship).

Assuming an input ASAR intensity image I with image dimensions X ×Y where x = {0, . . . , X − 1}, y = {0, . . . , Y − 1}

and x, y ∈ N such that image I can be defined as [21]

I =

{{
I(x, y)

}x=X−1

x=0

}y=Y−1

y=0

(1)

=



I(0, 0) · · · I(0, Y − 1)

I(1, 0) · · · I(1, Y − 1)

...
. . .

...

I(X − 1, 0) · · · I(X − 1, Y − 1)


. (2)

The CA-CFAR prescreening method produces a binary output image J(I, T ) from the input image defined in (2) using

J(I, T ) =

{{
J(I, x, y, T )

}x=X−1

x=0

}y=Y−1

y=0

. (3)

where T is known as the CA-CFAR threshold and is inversely proportional to the number of false alarms permissible. The

CA-CFAR binary image J(I, x, y, T ) is calculated with

J(I, x, y, T ) =


true if µratio (x, y) > T

false otherwise
. (4)

The quantity µratio (x, y) is known as the mean (power) ratio and is defined as

µratio (x, y) =
µROI (x, y)

µC (x, y)
, (5)

µROI (x, y) and µC (x, y) are known as the mean region of interest and mean clutter respectively and are calculated using the

window system shown in Fig. 2. Notice that the threshold is a single value which acts equally on all pixel values, irrespective

of pixel location withing the SAR image. The following section explains how this study extends this single threshold to a

threshold manifold to take into account variations in pixel intensity.

B. Extending CA-CFAR Prescreening

The conventional CA-CFAR method uses a single threshold value to determine if the current pixel ratio µratio is a ship or

not. If the threshold value is low, a vast number of pixels will be highlighted, many of which will be false alarms. If the

threshold value is high then the number of false alarms will be significantly reduced but a number of valid targets will be

ignored, causing a drop in detection accuracy. The selection of T in itself is a difficult task made more so by the fact that

a single threshold value, even when used to discriminate between local statistics of pixels, may not be sufficient to properly

discriminate between similarly valued mean ratio values. Fig. 3 presents an example of how a single threshold (flat manifold)

can fail on some occasions to properly discriminate regions with the same or similar µratio values. Pixels that are brighter than

their neighbors manifest as large values compared to others in the neighborhood. These high ratio values appear as “spikes”
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in the ratio image because µROI > µc. Fig. 3 shows three spikes found in a mean ratio image with two threshold manifolds

overlaid - one flat and the other non-flat. A single-valued, flat manifold would not be able to differentiate the two right-hand

spikes with the same value. With a flat threshold, either they are both accepted or rejected as bright (ship) pixels. If we assume

that the one furtherest right is a false alarm, by extending the threshold manifold to allow for variations in the threshold value

along the manifold, the two spikes can easily be separated by increasing the threshold over the one that is not a ship.

The single value T can be extended to a discrete threshold manifold or surface, constrained by the input image dimensions

X × Y where x = {0, . . . , X − 1}, y = {0, . . . , Y − 1} and x, y ∈ N such that threshold manifold T can be defined as

T =

{{
T (x, y)

}x=X−1

x=0

}y=Y−1

y=0

(6)

=



T (0, 0) · · · T (0, Y − 1)

T (1, 0) · · · T (1, Y − 1)

...
. . .

...

T (X − 1, 0) · · · T (X − 1, Y − 1)


. (7)

This creates a discrete manifold that is bounded at the sides by the image limits X and Y and threshold value T ∈ R+ [12],

[13]. In much the same way the various threshold surface solutions possible in this paper all lie within the constrained surface

or discrete manifold parametrized by the two positional variables (x,y) and the threshold value T (akin to the two pose variables

and azimuthal lighting in [14]).

We introduce a new CA-CFAR prescreening method that differs from previous ones [4], [8], [20]. It can be created by

extending (4) to include the new threshold manifold T (x, y). Specifically, the output binary image J(I, x, y, T (x, y)) is

calculated with

J(I, x, y, T (x, y)) =


true if µratio (x, y) > T (x, y) ,

false otherwise,
(8)

where T (x, y) ∈ R+. Pixels with an associated threshold value of T < 1.0 are ignored. The threshold value for this study was

assumed to be within the range T ∈ [1, 255]. These bounds are important as they significantly reduce the range of possible

threshold values. The lower bound of T ≥ 1 is derived from the fact that ships and thus thresholds need to be at least as

bright as their surroundings and the upper bound is derived from the maximum possible pixel value of 255 for an 8-bit input

grayscale image. A discussion of how a collection of ship positions can be used unconventionally to help generate threshold

manifold values is discussed next.

C. Ship distribution map

For this study, a total of 450 000 ship positions were collected using LRIT transponders between 2011 and 2012 and was

used as a priori information to generate a ship distribution map [4]. A small subimage of the ship distribution map off of the

South African coast is shown in Fig. 4. Even though LRIT data was used to generate the ship distribution map any source of

ship Latitudes and Longitudes can be used to generate the ship distribution map.
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If enough ship positions are collected over a number of years, a daily, weekly or even monthly ship distribution map for a

given region could be generated. All 12 months of transponder data was used to generate the ship distribution map and it was

assumed this would sufficiently model the average movement of ships within the image’s geographical limits.

This ship distribution map is used to assign, to each pixel of the input image, a value which represents the likelihood of

that pixel having shipping traffic. Pixels with high associated probabilities implies many ships transmitted their position at that

position and low associated probabilities means fewer ships had coordinates recorded for that position. More formally, given

an input image I with image dimensions defined above, the associated ship distribution map V for that image is defined as

V =

{{
V (x, y)

}x=X−1

x=0

}y=Y−1

y=0

(9)

=



V (0, 0) · · · V (0, Y − 1)

V (1, 0) · · · V (1, Y − 1)

...
. . .

...

V (X − 1, 0) · · · V (X − 1, Y − 1)


. (10)

Each V (x, y) is calculated by adding up the number of ship positions found in the data at that geographical coordinate then

dividing each coordinate by the total number of coordinates counted. This ensures that V is normalized and that the sum of

all V (x, y) is unity. In essence, this forms a 2D histogram of Latitude and Longitude coordinates which are then divided by

the total number of coordinates to create a ship distribution map. Once the distribution map is generated, it can be used in a

unique way to adapt an initial threshold manifold using Simulated Annealing. If the ship distribution map is unavailable, the

current non-flat threshold manifold is passed onto the final stage and is used to threshold the input image to produce a final

output. The ship distribution map is therefore useful to significantly reduce the false alarm rate but is not required in order for

the method to produce results.

IV. SIMULATED ANNEALING

To adapt the threshold manifold a widely used optimization method known as Simulated Annealing was used in conjunction

with the ship distribution map [15]. Simulated Annealing mimics the process of heating a material and allowing it to slowly

cool to reduce abnormalities in the material. The method works by altering a currently accepted solution, testing the validity

of the new solution and then replacing the current best solution with the new solution. The method also allows “bad” solutions

to be accepted to improve solution diversity. A flow chart of the Simulated Annealing method is shown in Fig. 5. The benefit

of SA is that it uses a given solution to generate further solutions. This is in contrast to other methods, such as GA, which

search the entire solution space using multiple different candidates [16], [17]. While other methods focus on searching the

entire solution space using different versions of a number of solutions this is not required for SA because if the initial solution

is acceptable only further improvements to the input solution are required to get a solution which provides good results. In the

case of this study, it is assumed that the initial threshold manifold highlights all ships within the ASAR imagery. This implies

that the initial threshold manifold T0 is a good starting solution because subsequent processing steps need only remove the false

alarms by increasing those pixels’ thresholds to improve performance. This intelligent starting manifold threshold selection
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significantly reduces the number of searchable ship positions from the entire image to only those as bright as their surroundings.

Subsequent steps of the SA processes uses the ship distribution map to evaluate changes in threshold manifold values. For the

sake of brevity Ti for i = 1, 2, . . . , N is equivalent to Ti (x, y) where N represents the total number of Simulated Annealing

steps.

A. Initial threshold manifold

The first stage of the Simulated Annealing process is to generate an initial, acceptable solution. The initial threshold

manifold, T0, is generated by running a low, flat CA-CFAR prescreening on the input ASAR image I such that T0 (x, y) =

J(I, x, y, T (x, y) = 1.0). This will select all areas of the input image that have a brighter-than-average pixel value including all

ships. These positions will have an associated threshold manifold value of T0 = 1.0 whilst all others will have have T0 = 0.0.

To correctly increase threshold manifold values for false alarms a means of threshold manifold evaluation is presented next.

B. Mean change in probability per ship

Simulated Annealing requires a manner to evaluate the current solution Tcurrent and its possible replacement Ti. To do so,

some metric must be calculated for each solution. Given Ti and I, the number of ships detected Li, the total probability vtotal
i

at time step i can be calculated. The total probability vtotal
i is the sum of all probabilities for all the detected ship centers across

the whole image using V (x, y) at each time step i which is computed as

vtotal
i =

X∑
a

Y∑
b

{V (a, b) | Ji (I, a, b, Ti) = true} , (11)

where Ji (I, a, b, Ti) is the input image I (x, y) processed using the CA-CFAR with the threshold manifold Ti. Note that total

probability may change at each step because the detected ships may change at each stage.

The mean probability per ship is

α =
vtotal

Li
. (12)

This can be extended to include the variations in the mean probability per ship at each time step by noting the change in α

and the change in the number of ships such that the mean change in probability per ship, βi, is

βi =
|vtotal

i − vtotal
i−1|

|Li − Li−1|+ ε
. (13)

The symbol ε is a arbitrarily small value, typically ε << 10−9. At each time step, βi can change based on the current threshold

manifold Ti, which then directly affects the value of total probability vtotal
i .

Once the mean change in probability βi is calculated for a given time step, a cost function can be used decide if the current

threshold manifold Ti represents an improvement or not. The cost function at time step i, Di, is calculated using βi with

Di = 1− |βi − βi−1|. (14)
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For the initial threshold T0 values are assumed such that D0 = 1, vtotal
0 = 0, L0 = 0 and β0 = 0. Cost function values that

are closer to one are preferable because they represent a smaller change in mean ship probability. This is because an small

decrease in mean ship probability indicates a reduction in the number of ships in low probability zones which are most likely

false alarms. This causes a small change in β between step i− 1 and i and thus the cost function tends closer to one in those

cases. An example of this process is shown in Fig. 6. Do note that for the sake of clarity, a flat threshold manifold is used in

this example and not the non-flat manifold as introduced in this paper (the same principle applies).

C. Manifold adaptation

The manifold adaptation scheme used in this study estimates the degree to which the areas of the manifold should be adapted

by using the number of ships that are neighboring every ship. The threshold manifold is increased by a uniform random amount

inversely proportional to the number of ships near each ship and added to the previous threshold value at that pixel which is

expressed as

Ti (a, b) =

{
Ti−1 (a, b) +

(
R ∗ 1

Z (a, b)

)
| Ji (I, a, b, Ti) = true

}
. (15)

Z (a, b) refers to the number of ships in a square area around the ship found in Ji (I, a, b, Ti). If no ships are found within

the area, Z (a, b) = 1. The reasoning behind the inverse relation between the number of ships and the threshold change is that

areas with more ships should be increased slowly as the likelihood of ships in those areas is assumed to be more. Singular,

solitary pixels’ thresholds should be increased rapidly so that their effect on the overall mean probability can be ascertained

more quickly. If these solitary pixels are in low probability areas then their removal will have little to no effect on the mean

probability per ship and these would typically be assumed as false alarms and require higher threshold values.

Despite the above, a threshold with a low cost can still be accepted if the rejected candidate’s probability of acceptance is

above a given value known as the Boltzmann probability. The Simulated Annealing method allows for this replacement of the

“best” solution in order to prevent the process from settling into non-optimal, local minima. To prevent this, the temperature

parameter γ is introduced which is related to the mean threshold value. Specifically, the current temperature γi is equal to

γi =
100

µTi

, (16)

µTi =
1

Li

x=X−1∑
x=0

y=Y−1∑
y=0

Ti (x, y) where Ti (x, y) > 0, (17)

for i = 1 . . . N . We assume γ0 = 100 and µT0
= 1.0 because at i = 0 all threshold values within T0 are either T = 1.0 for

highlighted pixels or T = 0.0 for the rest.

The value of µTi increases as the simulated annealing process continues, thus decreasing the temperature γi over time. Using

the current temperature and the change in cost, a previously rejected threshold manifold can be accepted using the Boltzmann

probability if

e
−∆D

γi > R. (18)
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Where ∆D is the change in cost between the current solution and the best solution, γi is the current temperature of the solution

and R is a random uniform real number in the range [0, 1].

The above is repeated until the change in cost function over a number of time steps is negligible or a number of predefined

time steps N has been reached. The final output image is JN = J(I, TN (x, y)). The ships within this image are grouped

together, and their center positions within the image are used to compare against the known ship positions to determine the

methods performance. Using the center position ensures groups of nearby detections are fused in order to prevent azimuthal

ambiguities near to the ships whilst maintaining the correct number of detections.

D. Proposed method components discussion

1) Method components: The various components of the method proposed here have been designed in such a manner that a

selection of methods can be used in lieu of the ones presented in this paper. The initial threshold manifold can be generated

using a number of different techniques including Greatest-of CFAR (GO-CFAR), Smallest-of (SO-CFAR), Order-Statistic CFAR

(OS-CFAR) [8] or even by converting unconventional methods to work for ship detection [22]. The final performance of the

method as a whole is dependent on the properties of this input method and so it should be selected with care. It is important to

select an initial threshold manifold generation method that provides a high detection accuracy to ensure that subsequent steps

of the proposed method effectively remove false alarms whilst maintaining correctly detected ships. The SA process can be

replaced with alternatives, like a GA-based method if a carefully considered initial and subsequent solution generation scheme

is devised. Finally, the type of CFAR method used to prescreening the image (both before and after the manifold has been

generated) is flexible and the details of this is discussed next.

2) CA-CFAR and other CFAR variants: Each of the CFAR variants use the clutter adjacent to the test region in different

ways. In the CA-CFAR method all of the background values not in the guard window are considered equally and are compared

to the center pixel or ROI. By weighting each pixel equally no preference towards brighter or darker background pixels are

given. Contrastingly, when using one of the other statistical CFAR methods, the representation of the clutter is formed by

a single pixel, such as GO-CFAR using the greatest pixel neighbor and SO-CFAR using the smallest pixel neighbor. This

neighborhood representation is then compared to the ROI in the same way for the different CFAR methods using a threshold

T . Conventionally, the distinction between which type of CFAR used is important. This is because the different CFAR types

handle different types of clutter better or worse for a given threshold value (or a set probability of false alarm). As mentioned

in [8], SO-/GO-/OS-CFAR based methods tend to perform better when applied to heterogeneous clutter. However, the method

proposed here extends the definition of the CA-CFAR method to allow the threshold to vary on a per-pixel basis. By doing

so, the extended CA-CFAR acts as a variable statistic CFAR method such that for some pixels the threshold can be set low to

simulate a SO-CFAR or high for other pixels to simulate a GO-CFAR. The standard CA-CFAR suffers from being sensitive

to either too low or too high values in the background which skews the background statistics and can provide unsatisfactory

performance when using a single threshold value. The variability afforded by the threshold manifold offsets the conventional

CA-CFAR’s downside because darker or brighter pixel neighborhoods are compensated for by changes across the threshold

manifold. It should be noted that whilst the CA-CFAR method has been extended here, a number of CFAR forms could also
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be extended to make use of the variable threshold manifold. The CA-CFAR method used here could be replaced with the

SO-/GO-/OS-CFAR based methods by changing how µclutter is calculated. The final threshold manifolds will look considerably

different between the methods because each threshold manifold would compensate the difference between the test ROI and

background clutter representation differently through the SA process. It is for this reason that only the CA-CFAR and GO-

CFAR are used to compare to the proposed method in order to highlight the flexibility provided by the extended CA-CFAR

prescreening method.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments were conducted on six ASAR images with a total of 135 ships across all images. A separate Simulated

Annealing manifold adaptation for each of the six images was performed before applying the threshold manifold with the

lowest number of false alarms to the input image. Detection accuracy (DA) is the percentage of correctly detected ships given

all the possible ships across the entire image. The false alarm rate (FAR) is the number of falsely detected ship pixels divided

by the total number of sea pixels tested. Table I and II show the results of the proposed method compared to a conventional CA-

CFAR at three different thresholds, a GO-CFAR at two different thresholds, a standard and advanced Otsu’s based thresholding

method [23], [24] and an advanced automatic CA-CFAR threshold selection method presented in [4]. The parameters for the

CFAR based methods had ROI, guard and clutter sizes of 1× 1, 5× 5 and 7× 7 respectively and were selected based on the

ship sizes expected. The standard Otsu’s method had no parameters but the advanced Otsu’s method required a minimum and

maximum number of ships as well as the minimum and maximum size of the ships in each image which were set to 2, 135,

1 and 7 respectively. For the SA a maximum number of N = 10000 steps with the initial CA-CFAR prescreening stage using

the same parameters as the CA-CFAR method at T = 1.0 was tested.

Table I illustrates the difficulties of using a single threshold across a number of images when compared to the proposed

method. The CA and GO variants of the CFAR prescreening method have comparable DA performances but fail to attain

the same performances of the proposed method. Despite the fact that the GO-CFAR variant has fewer false alarms than the

CA-CFAR the proposed method has an order of magnitude better FAR and comparable DA as well as more consistent FAR

values. When selecting an initial threshold manifold generation method it is important to realise that at T = 1.0 the GO-CFAR

method fails to highlight every ship within the image. Due to the way in which the final solution is obtained this missing

ship will not be identified as the SA process continues. The flat threshold selected for the first three images indicate that the

CA-CFAR thresholds would be better selected between T = 2.5 and T = 3.5 for the CA-CFAR and between T = 1.0 and

T = 1.5 for the GO-CFAR to achieve a better balance between high DA and low FAR.

Table II illustrates more advanced methods compared to the proposed method. The flat threshold CA-CFAR method can

still be effective if an intelligent selection of flat threshold value is made per image, as is the case when using the automatic

selection of thresholds from [4]. The results of this method are shown in the first column of Table II. This method uses the ship

distribution map to select a flat threshold for each image separately and provides a higher level of DA and correspondingly

lower FAR compared to the basic CA-CFAR results. The standard and advanced Otsu’s prescreening methods were selected

to compare ship detection methods which work differently to the CFAR-based methods. Both Otsu’s methods utilize global
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thresholding and the advanced method uses morphological image operations to remove false alarms. The standard Otsu’s

performed poorly, with a comparable mean DA of 87.9% but a mean FAR of 1.015 × 10−2. This indicates that a global-

based prescreening method provides unacceptable performance and requires significant adjustments and/or an additional ship

discrimination stage in order to be comparable to the proposed method. This is taken note of in [23], and this advanced Otsu’s

uses a morphological based ship discrimination stage to reduce false alarms. Using the selected parameters, the method was

able to reduce the mean FAR of the standard Otsu’s thresholding whilst maintaining the same mean DA. Despite this, the

method failed to reduce a significant number of the false alarms across all images and maintained a high standard deviation

for both DA and FAR.

Looking towards the proposed method we note that it had the lowest mean FAR of all the methods tested. Compared to

the next best method, the automatic threshold selection method, a drop of 6% DA was deemed acceptable for the 40% drop

in FAR. When comparing it to the third best method, the advanced Otsu’s thresholding, the 2% drop in DA is compensated

by a fourfold increase in FAR performance. The low standard deviation values imply that over a number of test images the

proposed method had the most consistent FAR and third most consistent DA results. It should be noted that the proposed

method did discard a few correct ships which suggest that future work should identify an adjustment to threshold manifold

evaluation and in order to identify when thresholds over correct detections have been increased too much.

VI. CONCLUSION

To improve a country’s MDA a variety of different technologies must be used to monitor ships. Whilst conventional

transponder based systems are useful when the ship is cooperative, alternative means of ship detection are required in some

case. The usage of SAR imagery for the detection of ships at sea is a well studied topic in literature and the methods range

from global thresholding methods to statistical estimation of local windows around ships. A novel extension to a popular ship

detection prescreening technique known as CA-CFAR was presented in this paper. The proposed method extends a single scalar

threshold to a threshold manifold. To help with the selection of threshold values, the paper presents the SA optimization method

in conjunction with a ship distribution map which highlights the most traversed areas in the ocean. This ship distribution map can

be generated from any number of ship positional sources and assists in estimating the threshold manifold. The inefficiencies of

the SA method are avoided by selecting the results of a low threshold CA-CFAR processed image as input along with bounding

the required threshold values. Once an acceptable threshold manifold is generate it is applied to the input SAR image using

the extended CA-CFAR method and the results are compared to known ship locations.

The proposed method was compared a number of other methods: conventional CA-CFAR and GO-CFAR prescreening at

various thresholds; a standard Otsu’s prescreening method; an automatic threshold selection method; and an advanced Otsu’s

method. The proposed method had a DA of 85.1% with the lowest reported FAR 1.01 × 10−7 of all the methods tested.

Furthermore, the results indicate that the method provides consistent performance across a number of test images with the

method providing the third lowest standard deviation for DAs and the lowest standard deviation for FARs. The flexibility

introduced allows for a multitude of methods to be used in places of the initial prescreening, secondary CFAR prescreening

and manifold generation. The results indicate that the method still has room for improvement by altering the sensitivity of the
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SA evaluation function to identify when manifold threshold values for correct detections have been increased too much.
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TABLE I
DETECTION ACCURACY AND FALSE ALARM RATES, IN PARENTHESES, FOR A CA-CFAR USING THREE DIFFERENT THRESHOLDS, A GO-CFAR USING

TWO DIFFERENT THRESHOLDS AND THE PROPOSED METHOD.

Image CA-CFAR T = 1.0 CA-CFAR T = 2.5 CA-CFAR T = 3.5 GO-CFAR T = 1.0 GO-CFAR T = 1.5 CA-CFAR SA

Image 1 100%
(
5.170× 10−3

)
82.4%

(
1.313× 10−7

)
52.9%

(
3.282× 10−8

)
100%

(
2.085× 10−3

)
100%

(
9.281× 10−7

)
82.4%

(
1.050× 10−8

)
Image 2 100%

(
5.720× 10−3

)
88.4%

(
1.556× 10−5

)
58.1%

(
1.186× 10−5

)
100%

(
2.516× 10−3

)
100%

(
1.911× 10−6

)
83.7%

(
1.100× 10−7

)
Image 3 100%

(
4.800× 10−3

)
85.7%

(
5.415× 10−7

)
47.6%

(
4.923× 10−8

)
90.5%

(
2.320× 10−3

)
42.9%

(
9.555× 10−7

)
80.1%

(
1.150× 10−8

)
Image 4 100%

(
6.600× 10−3

)
88.9%

(
4.368× 10−7

)
88.9%

(
5.461× 10−7

)
83.3%

(
3.181× 10−3

)
27.8%

(
2.741× 10−7

)
83.3%

(
1.700× 10−7

)
Image 5 100%

(
6.250× 10−3

)
100%

(
6.875× 10−7

)
100%

(
6.875× 10−7

)
100%

(
2.936× 10−3

)
100%

(
2.688× 10−6

)
100%

(
1.995× 10−7

)
Image 6 100%

(
6.300× 10−3

)
97.6%

(
6.167× 10−6

)
85.4%

(
2.418× 10−6

)
87.8%

(
2.603× 10−3

)
80.5%

(
1.280× 10−7

)
80.0%

(
1.090× 10−7

)
Mean 100%

(
5.807× 10−3

)
90.5%

(
3.920× 10−6

)
72.2%

(
2.598× 10−6

)
93.6%

(
2.607× 10−3

)
75.2%

(
1.147× 10−6

)
85.1%

(
1.018× 10−7

)
Std dev. 0

(
7.065× 10−4

)
6.87%

(
6.146× 10−6

)
19.2%

(
4.619× 10−6

)
7.37%

(
0.400× 10−4

)
32.2%

(
9.843× 10−7

)
6.75%

(
7.849× 10−8

)

TABLE II
DETECTION ACCURACY AND FALSE ALARM RATES, IN PARENTHESES, FOR A CA-CFAR USING THREE DIFFERENT THRESHOLDS, AN AUTOMATIC

THRESHOLD SELECTION METHOD AND AN ADVANCED OTSU’S BASED METHOD VERSUS THE PROPOSED METHOD.

Image Automatic threshold Standard Otsu’s Advanced Otsu’s CA-CFAR SA

Image 1 88.2%
(
8.550× 10−8

)
82.4%

(
1.443× 10−2

)
82.4%

(
7.695× 10−7

)
82.4%

(
1.050× 10−8

)
Image 2 88.4%

(
2.581× 10−7

)
86.0%

(
3.371× 10−3

)
90.7%

(
7.643× 10−8

)
83.7%

(
1.100× 10−7

)
Image 3 85.7%

(
9.555× 10−8

)
71.4%

(
8.310× 10−3

)
76.1%

(
3.810× 10−7

)
80.1%

(
1.150× 10−8

)
Image 4 88.9%

(
3.700× 10−7

)
100%

(
1.930× 10−2

)
100%

(
9.060× 10−7

)
83.3%

(
1.700× 10−7

)
Image 5 100%

(
1.005× 10−7

)
100%

(
1.510× 10−2

)
100%

(
4.409× 10−7

)
100%

(
1.995× 10−7

)
Image 6 95.1%

(
1.21× 10−7

)
78.0%

(
2.582× 10−3

)
78.0%

(
2.755× 10−7

)
80.0%

(
1.090× 10−7

)
Mean 91.1%

(
1.718× 10−7

)
86.3%

(
1.051× 10−2

)
87.9%

(
4.749× 10−7

)
85.1%

(
1.018× 10−7

)
Std dev. 4.92%

(
1.163× 10−7

)
11.7%

(
6.814× 10−3

)
10.6%

(
3.102× 10−7

)
6.75%

(
7.849× 10−8

)

Fig. 1. Flow diagram of the system process for this experiment. An ASAR image is preprocessed by removing the land in the image and georeferencing the
image. This processed image is then prescreened using an initial CA-CFAR which is adjusted using SA. The initial solution is adjusted until there is little
change in the solution. This is then used in a second prescreening stage to produce a binary image with the detected ships centers as true values.
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Fig. 2. Pixel neighborhood system used in this study. The mean pixel value inside the clutter and Region of Interest (ROI) rings are calculated as µC and
µROI respectively. The clutter ring is used to represent each pixel’s mean ocean backscatter or clutter level. The guard ring is in place to prevent corruption
of the clutter mean by objects larger than the ROI. In this study the pixel sizes are: clutter (7× 7), guard (5× 5) and ROI (1× 1).

Fig. 3. Ratio image µratio (x, y) and two threshold manifolds, T1 and T2. The three spikes indicate three objects that are brighter than their surroundings,
with the left two being ships and the right one being a false alarm. Using a flat threshold manifold, the two spikes on the right can not be separated. A
non-flat manifold, such as T2, allows for discrimination between these two ships.

Fig. 4. A section of the ship distribution map generated using all 12 month’s LRIT data within the given geographic region. The image shows the ship
distribution map off the coast of South Africa, near Mossel Bay (34.1833◦ S, 22.1333◦ E). It is interesting to note that two shipping lanes are clearly visible
as well as two oil rigs. This is due to the fact that thousands of ship positions were collected along those lines, indicating a large number of traversals over
those points.
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Fig. 5. The Simulated Annealing threshold manifold adaptation process. The process starts at i = 1 by using the intial manifold T0. The manifold is adapted
using the process described in section IV-C which generates the candidate threshold manifold. If the candidate threshold manifold fails evaluation it can still
be selected as a new, best candidate by means of the Boltzmann probability as described in section IV-C. Finally, the process is terminated when either N
steps have occurred or the change in temperature over a number of steps has stayed constant.

Fig. 6. Three flat threshold manifolds are shown with Ti (x, y) = {2.0, 2.5, 3.0}. The ship distribution map V (x, y) is superimposed over each image.
The number of ships are L1 = 5, L2 = 4 and L3 = 2 and the total probability is vtotal

1 = 0.5, vtotal
2 = 0.45 and vtotal

3 = 0.2 per step. Using eq. 14 the
cost values are D1 = 0, 900, D2 = 0, 950 and D3 = 0, 925. Notice how, intuitively, the highest cost threshold T2 is the best threshold manifold because it
removes a redundant bright pixel present at T1 but does not remove the two high probability ships like T3 does.


