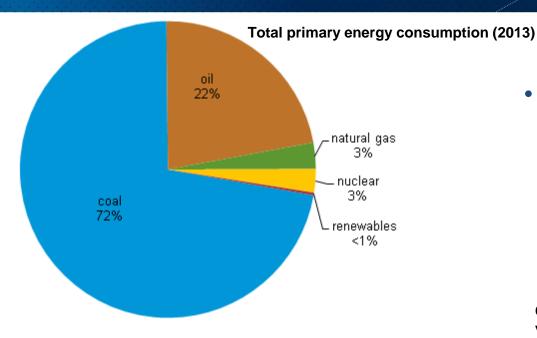
The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

Development of hydrogen storage technologies

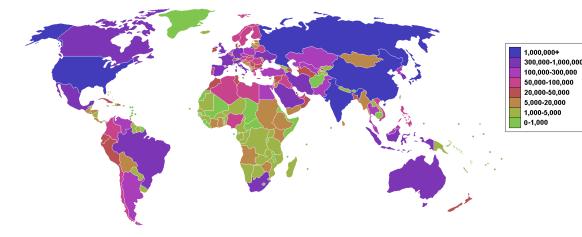
Henrietta Langmi

Outline

8-9 October 2015 | CSIR ICC


- Context
 - South African energy profile
 - Hydrogen energy
- Hydrogen South Africa (HySA)
 - Brief introduction
- Hydrogen storage
 - Background
 - Research

South African energy profile



Coal supplies 72% of South
 Africa's primary energy and 90%
 of its electricity requirements

 CO_2 emissions in thousands of tonnes per annum, via burning of fossil fuels

- SA 2013 CO₂ emissions:
 - Annual: 330 000 kt
 - Per capita: 6.2 t

Sources: http://www.eia.gov/ http://www.energytrendsinsider.com

Can hydrogen help?

• High energy content and clean

Hydrogen	+	Oxygen	\rightarrow	Water	+	Energy
H _{2(g)}	+	1⁄2 O _{2(g)}	\rightarrow	H ₂ O	+	E

 $E = 120 - 142 \text{ MJ kg}^{-1} \text{ heat (combustion)}$

= 1.23 V electrical potential + 24 MJ kg⁻¹ heat (fuel cell)

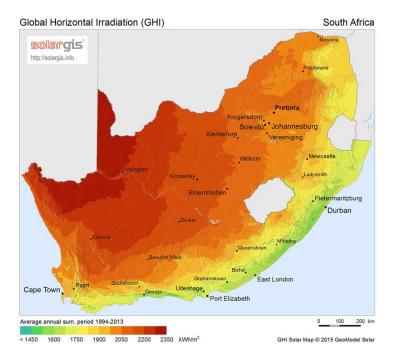
CELEBRATING

our future through science

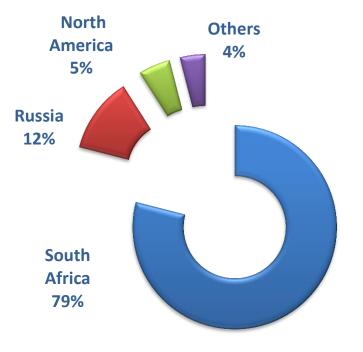
(40 – 55 MJ kg⁻¹ for combustion of hydrocarbons; CO₂ emitted)

- Abundant
 - 3rd most common element on earth's surface
 - Water (H₂O), fossil fuels (–CH_x), biomass (–CH_yO_z)

Hydrogen energy chain



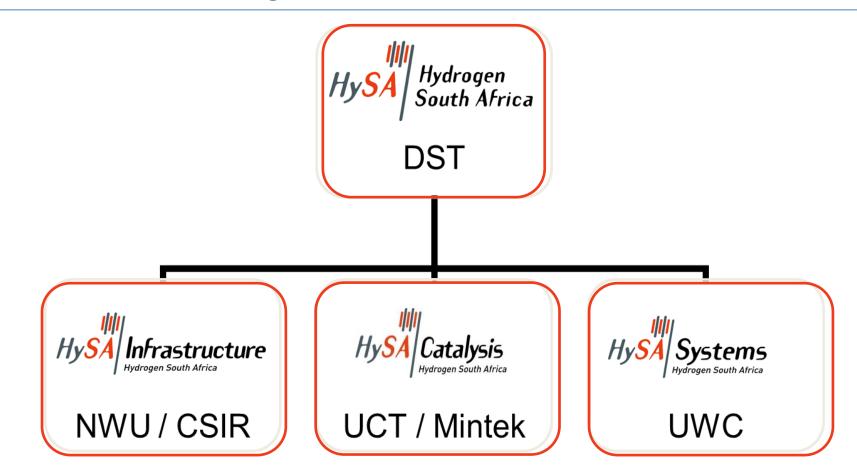
Natural resources in South Africa


The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

South Africa's solar potential

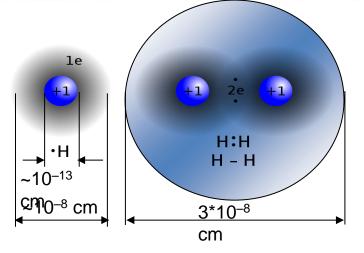
 Annual 24 h global solar irradiation average exceeds values in Europe, Russia, and most of North America

PGM supply by region


South Africa has nearly
 80% of the world's platinum
 group metals (PGMs)

Hydrogen South Africa (HySA)

CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC


The 5th CSIR

"To create knowledge and human resource capacity that will develop high-value commercial activities in H&FC technologies utilising local resources and existing know-how"

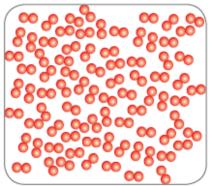
The hydrogen storage challenge

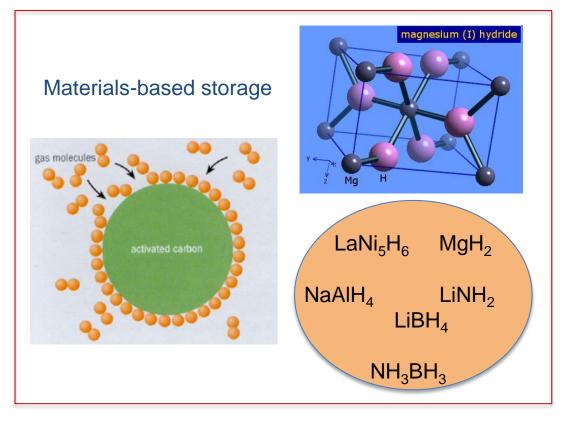
The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

Hydrogen:

- Lightest element, lowest density
- Strong covalent bond
- Low polarisation ability
- \rightarrow Weak interaction between H₂ molecules
- At room temp and atm pressure:
- 5 kg H_2 occupies vessel of \approx 5 m diameter

(5 kg H₂ gives 500 km driving range)




Hydrogen storage options

Compressed Gas

Cryogenic Liquid

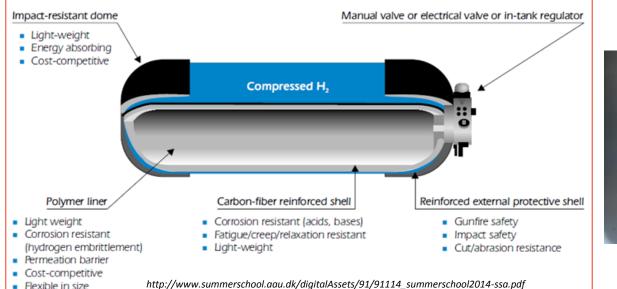
Liquid chemical carriers

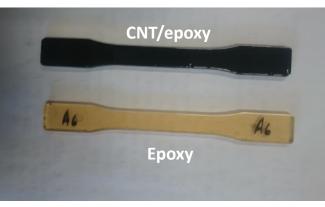
LOHC NH₃ HCOOH

Hydrogen storage research @ CSIR

- High pressure composite cylinders
- Chemical carriers (formic acid)
- Porous materials (MOFs, Carbon)

The 5th CSIR


8-9 October 2015 | CSIR ICC


CONFEREN

our future through science

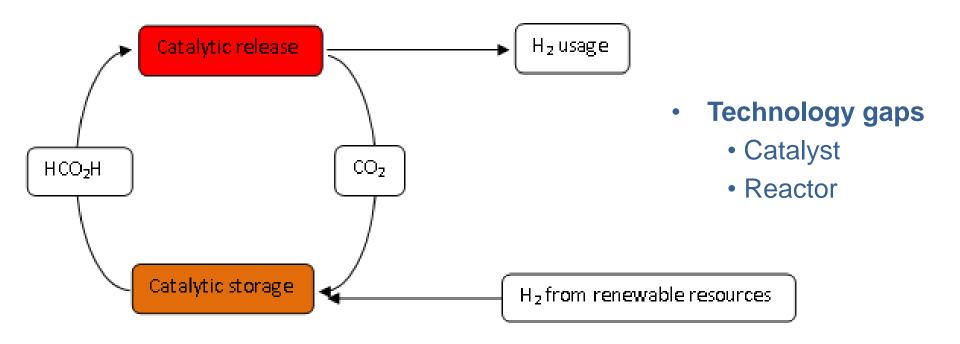
High pressure composite cylinders

- To develop enhanced materials and manufacturing methods to improve the characteristics of hydrogen storage tanks
 - Composite = Carbon fibre + resin + fillers
 - Resin modification (improve mechanical properties)
 - Finite element modelling (design capabilities)

The 5th CSIR

8-9 October 2015 | CSIR ICC

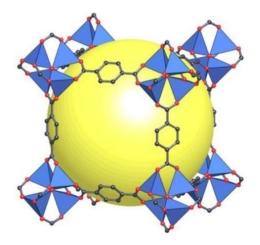
Chemical carriers – formic acid

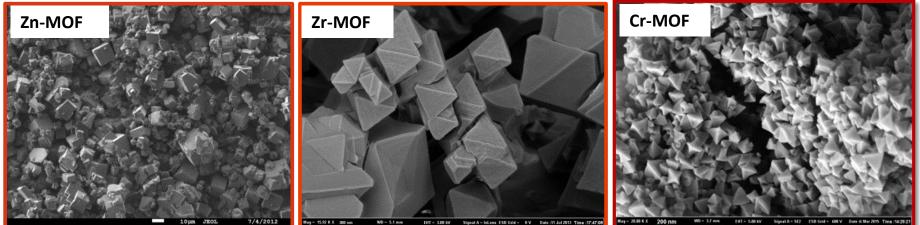


Decomposition of formic acid

$$\begin{split} &HCO_2H(l) \rightarrow CO_{2(g)} + H_{2(g)} \\ &HCO_2H(l) \rightarrow CO_{(g)} + H_2O_{(g)} \end{split}$$

 $\Delta H^{0} = 31.2 \ kJ/mol$ $\Delta H^{0} = 28.7 \ kJ/mol$


(Dehydrogenation) (Dehydration)



Metal-organic frameworks (MOFs)

 $\left(\begin{array}{c} 0 \end{array} \right)$ 8-9 October 2015 | CSIR ICC

- Several MOFs are being developed
- Beneficiation (Cr, Zr, PGMs)
- Cost saving (cheaper solvents/reagents)
- Environmentally friendly (water as solvent)
- High stability (thermal, air, moisture)

Metal-organic frameworks (MOFs)

CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

he 5th CSIR

Some MOF materials developed in our laboratory

MOF sample (solvent)	Size of crystals	S _{BET} (m²·g⁻¹)	Pore vol. (cm³·g⁻¹)	Thermal stability (°C)	Moisture stability	H ₂ uptake (wt.%) 77 K, 1 bar
Zr-fum MOF (H ₂ O)	200 nm	948	0.43	350	good	1.4
MOF-5 (DMF)	5-100 µm	860	0.41	350	poor	1.4
MOF-69c (DMF)	5-100 µm	1086	0.44		poor	1.9
Zr-MOF (DMF)	300-500 nm	1186	0.56	500	good	1.5
Cr-MOF (H ₂ O)	200-300 nm	1716	0.71	350	good	1.9
Cr-MOF@Zr-MOF (DMF)	350-500 nm	2772	1.08	400	good	2.4

- High thermal stability
- Good moisture stability
- Comparable H₂ storage capacity

Int. J. Hydrogen Energy 39, 2014, 890;
Int. J. Mat. Res. 105, 2014, 516;
Int. J. Hydrogen Energy 39, 2014, 12018;
Int. J. Hydrogen Energy 39, 2014, 14912;
Int. J. Hydrogen Energy, 40, 2015, 10542;
Materials Today: Proceedings, 2, 2015, 3964.

Carbon nanostructures (CNS)

The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

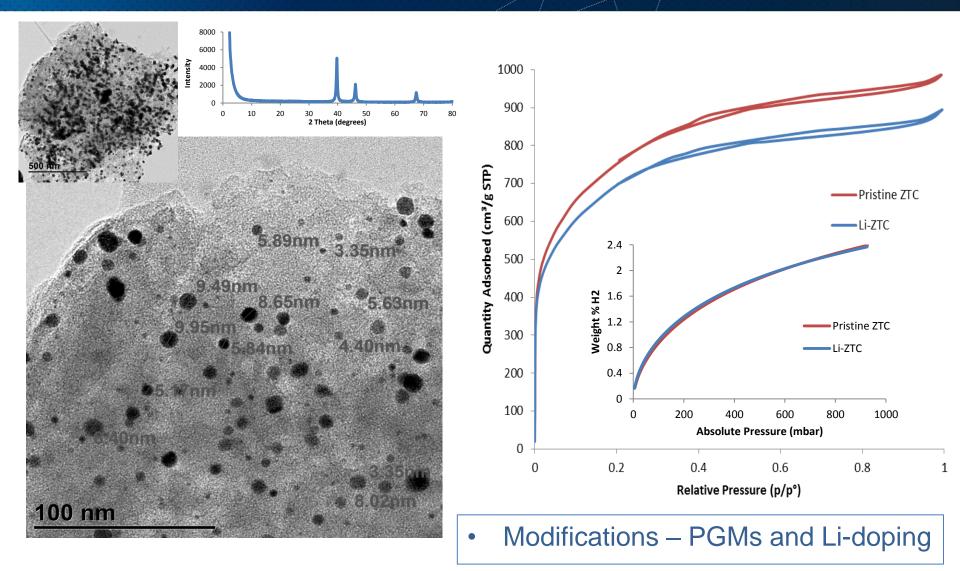
- Several CNS are being developed
- Templated carbons
 - Conventional feedstocks
 - Unconventional feedstocks
- MOF derived carbons
- Graphene
- Activated carbon

Recrystallizatior to zeolites

Templating Process

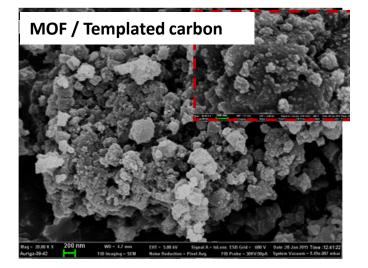
emplated ca

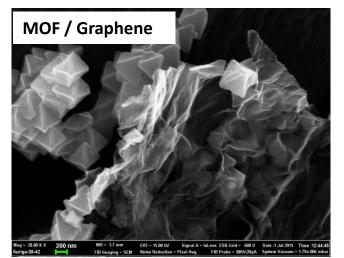
femplated carbon

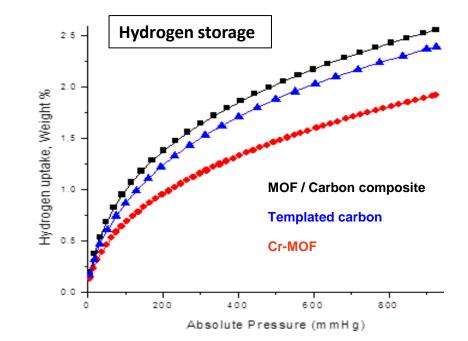

- Highly ordered pore structure
- Beneficiation (fly ash, clay)
- Cost saving (waste feedstocks)

Int. J. Hydrogen Energy 40, 2015, 9382

Int. J. Energy Res. 39 2015, 494.

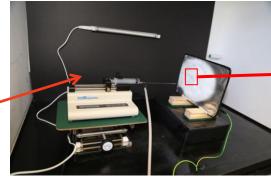

Carbon nanostructures: modifications


The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC



MOF / Carbon composites

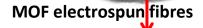
The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC


- Beneficial towards practical applications
 - Enhanced H₂ storage capacity
 - Enhanced thermal conductivity
 - Enhanced bulk density

Res. Chem. Intermed. 2015, In press

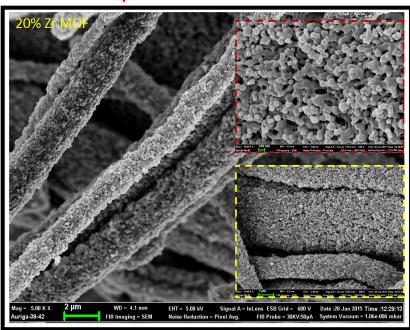
Powder shaping: electrospinning

The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

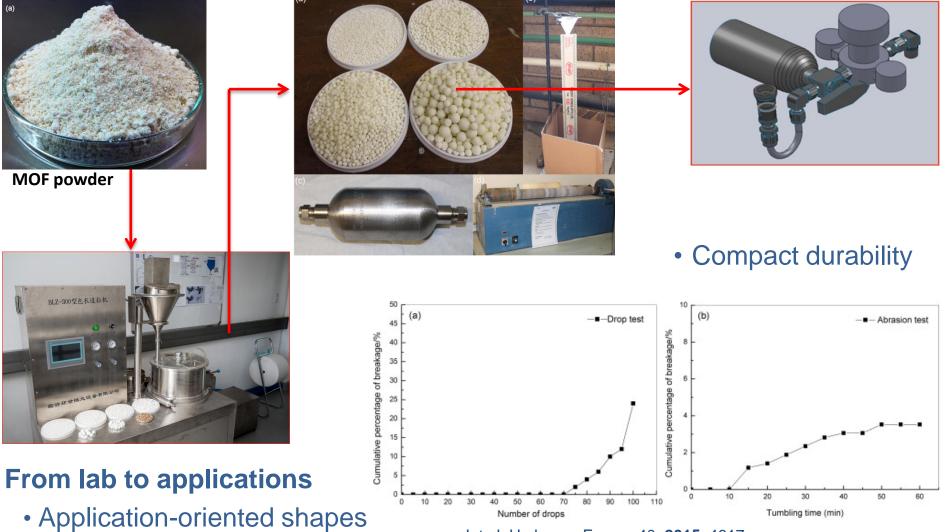

MOF/polymer solution

Electrospinning set-up

Transition from lab to applications


- Application-oriented shapes
- Other attractive properties
 - High surface areas
 - Hierarchical pores

Int. J. Hydrogen Energy 40, 2015, 9382



Powder shaping: granulation

The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

Int. J. Hydrogen Energy 40, 2015, 4617

- Hydrogen is potentially a good alternative to fossil-based fuels
- Hydrogen storage presents a major challenge
- HySA Infrastructure is developing attractive and competitive hydrogen storage options for practical applications
- Key considerations are hydrogen storage properties, beneficiation, cost, environment

Dream? Vision? Reality?

"...I believe that **water** will one day be employed as fuel, that **hydrogen** and oxygen which constitute it, used singly or together, will furnish an inexhaustible source of **heat** and **light** ... Water will be the coal of the future...."

Jules Verne, The Mysterious Island, 1874

Water + Energy \rightarrow Hydrogen + Oxygen \rightarrow Water + Energy

J.A. Turner et al., Electrochem. Soc. Interface 13, 2004, 24.

http://www.Hyweb.de

Acknowledgements

<image>

Financial Support

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Host Institutions

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMU NOORDWES-UNIVERSITEIT

8-9 October 2015 | CSIR ICC

Thank you

